Abnormal oscillation in the brain causes motor deficits in Parkinson's disease

November 1, 2011

The research group headed by Professor Atsushi Nambu (The National Institute for Physiological Sciences) and Professor Masahiko Takada (Primate Research Institute, Kyoto University) has shown that the 'oscillatory' nature of electrical signals in subcortical nuclei, the basal ganglia, causes severe motor deficits in Parkinson's disease, by disturbing the information flow of motor commands. The group also found that chemical inactivation of the subthalamic nucleus (a structure of the basal ganglia) in parkinsonian monkeys improved the motor impairments by reducing the 'oscillations.' The results of this study were reported in European Journal of Neuroscience, November 2011 issue.

 A member of the research group, Assistant Professor Yoshihisa Tachibana, succeeded to record in monkey basal ganglia neurons under unanesthetized conditions. The group found that neurons in the parkinsonian basal ganglia showed abnormal 'oscillatory' activity, which was rarely seen in normal subjects. The abnormal rhythm was completely eliminated by systemic administration of a dopamine precursor (L-DOPA), which is clinically used for human parkinsonian patients. The group considered that loss of dopamine induced the 'oscillations' in the basal ganglia and that the following disturbances in information flow of motor commands impaired motor performances. Abnormal neuronal oscillations were already reported in parkinsonian patients and animal models, but this report has provided the direct evidence that 'oscillations' are associated with motor abnormalities. Moreover, it was also shown that the injection of a chemical inhibitor, muscimol, into the subthalamic nucleus silenced the oscillatory signals, and eventually reversed parkinsonian motor signs.

Professor Nambu claims, "By investigating the 'oscillatory' nature of electrical signals in the , we can advance our understanding of the pathophysiology of Parkinson's disease. We improved motor deficits by means of infusion of the chemical inhibitor (muscimol) into the to silence the 'oscillatory' signals in the brain structure. This may provide us important clues to developing new treatments for Parkinson's disease."

Related Stories

Recommended for you

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

Sleep makes our memories more accessible, study shows

July 27, 2015

Sleeping not only protects memories from being forgotten, it also makes them easier to access, according to new research from the University of Exeter and the Basque Centre for Cognition, Brain and Language. The findings ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.