Targeting bacterial gas defenses allow for increased efficacy of numerous antibiotics

Although scientists have known for centuries that many bacteria produce hydrogen sulfide (H2S) it was thought to be simply a toxic by-product of cellular activity. Now, researchers at NYU School of Medicine have discovered H2S in fact plays a major role in protecting bacteria from the effects of numerous different antibiotics.

In the study led by Evgeny Nudler, PhD, the Julie Wilson Anderson Professor of Biochemistry at NYU School of Medicine, researchers found evidence that H2S acts as a general defense mechanism against oxidative stress, the process through which many antibiotics kill bacteria. This information provides the basis for developing new techniques to suppress this universal bacterial and make bacteria more susceptible to antibiotics at lower doses. It also paves the way for reversing in such as Staphylococcus, Pseudomonas, E. coli, and many others. The study's findings were published online on November 17 edition of Science.

"Surprisingly little has been known about H2S biochemistry and physiology in common bacteria" said Dr. Nudler. "We are excited about the potential impact this research may have on the growing problem of . These findings suggest a conceptually new approach, an adjuvant therapy that targets bacterial gas defenses and thus increases the efficacy of many clinically used antibiotics."

More specifically, the study showed that integrated mechanism of H2S-mediated protection against oxidative stress also protects against antibiotics. The research provides direct support for the emerging concept of the pro-oxidative action of many antibiotics. In addition, the study demonstrates that bacteria that generate both H2S and nitric oxide (NO) simultaneously, such as B. anthracis (a causative of anthrax), cannot survive without both gases, even under normal growth conditions. One gas makes up for the lack of the other and at least one of them is essential.

In a previous study Dr. Nudler and his colleagues demonstrated that NO plays a similar role in protecting bacteria from antibiotics (Science September 9, 2009). However, because NO is present in only a limited number of bacteria while synthesis occurs in essentially all bacteria, the practical implications of this new finding is extremely wide-ranging.

Related Stories

Researchers reveal a new mechanism of genomic instability

Aug 18, 2011

Researchers at NYU School of Medicine have discovered the cellular mechanisms that normally generate chromosomal breaks in bacteria such as E. coli. The study's findings are published in the August 18 issue of the journal ...

Resistant gut bacteria will not go away by themselves

Jun 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

Recommended for you

The impact of bacteria in our guts

Aug 22, 2014

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

Aug 22, 2014

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

Aug 22, 2014

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments