Researchers closer to the super bug puzzle

Infectious diseases specialists from Austin Health are working closely with Microbiologists from the University of Melbourne to understand how Staph is becoming resistant to all antibiotic therapies.

The treatment of serious infections caused by (Golden Staph) is complicated by the development of . Seriously ill patients, vulnerable to infections can be at additional risk if antimicrobial agents become less effective in fighting infections.

Published today in the journal , a new piece has been added to the puzzle, making the picture clearer. By using whole genome DNA sequencing of strains obtained from patients during persistent blood stream infections, Dr Timothy Stinear and Associate Professor Ben Howden, senior research fellows from the Department of Microbiology and Immunology have discovered how Staph can make one small change to its DNA and then develop resistance to the last-line antibiotic, vancomycin.

"We have applied the latest genome sequencing technology to show that Staph can readily become (antibiotic) resistant by acquiring a single mutation in its DNA. When the bacteria mutate, they are reprogramming themselves, changing their cell walls to resist the action of our antibiotics" said Dr Stinear.

Associate Professor Howden, who is also the head of Microbiology at Austin Health, is concerned by the implications of this discovery for patients. "Worryingly, this mutation also makes Staph more resistant to another last-line antibiotic, daptomycin, even though this drug had never been used for treatment. These last-line therapies are more toxic and cause additional side-effects in already compromised patients." Associate Professor Howden said.

"This study highlights the high adaptability of Staph in the face of antimicrobial treatment and suggests we need to improve the way in which we use antibiotics to treat serious bacterial infections." he said.

Related Stories

Staph infections carry long-term risks

Jul 03, 2008

Patients who harbor the highly contagious bacterium causing staph infections can develop serious and sometimes deadly symptoms a year or longer after initial detection, a UC Irvine infectious disease researcher has found.

Study of staph shows how bacteria evolve resistance

Jun 04, 2007

Antibacterial resistance doesn’t happen overnight. But until recently nobody knew exactly how long it took — or how it happened at all. Now, by studying blood taken from a single patient over a period of months, Rockefeller ...

Recommended for you

World 'losing the battle' to contain Ebola: MSF

8 minutes ago

International medical agency Medecins sans Frontieres said Tuesday the world was "losing the battle" to contain Ebola and called for a global biological disaster response to get aid and personnel to west Africa.

Mutating Ebola viruses not as scary as evolving ones

38 minutes ago

My social media accounts today are cluttered with stories about "mutating" Ebola viruses. The usually excellent ScienceAlert, for example, rather breathlessly informs us "The Ebola virus is mutating faster in humans than in animal hosts ...

War between bacteria and phages benefits humans

1 hour ago

In the battle between our immune systems and cholera bacteria, humans may have an unknown ally in bacteria-killing viruses known as phages. In a new study, researchers from Tufts University, Massachusetts ...

Ebola kills 31 people in DR Congo: WHO

3 hours ago

An outbreak of the Ebola virus in the Democratic Republic of Congo has killed 31 people and the epidemic remains contained in a remote northwestern region, UN the World Health Organization (WHO) said Tuesday.

Dengue fever strikes models in Japan

5 hours ago

A worsening outbreak of dengue fever in Japan has claimed its first celebrities—two young models sent on assignment to the Tokyo park believed to be its source.

Japanese researchers develop 30-minute Ebola test

5 hours ago

Japanese researchers said Tuesday they had developed a new method to detect the presence of the Ebola virus in 30 minutes, with technology that could allow doctors to quickly diagnose infection.

User comments