Researchers closer to the super bug puzzle

November 11, 2011

Infectious diseases specialists from Austin Health are working closely with Microbiologists from the University of Melbourne to understand how Staph is becoming resistant to all antibiotic therapies.

The treatment of serious infections caused by (Golden Staph) is complicated by the development of . Seriously ill patients, vulnerable to infections can be at additional risk if antimicrobial agents become less effective in fighting infections.

Published today in the journal , a new piece has been added to the puzzle, making the picture clearer. By using whole genome DNA sequencing of strains obtained from patients during persistent blood stream infections, Dr Timothy Stinear and Associate Professor Ben Howden, senior research fellows from the Department of Microbiology and Immunology have discovered how Staph can make one small change to its DNA and then develop resistance to the last-line antibiotic, vancomycin.

"We have applied the latest genome sequencing technology to show that Staph can readily become (antibiotic) resistant by acquiring a single mutation in its DNA. When the bacteria mutate, they are reprogramming themselves, changing their cell walls to resist the action of our antibiotics" said Dr Stinear.

Associate Professor Howden, who is also the head of Microbiology at Austin Health, is concerned by the implications of this discovery for patients. "Worryingly, this mutation also makes Staph more resistant to another last-line antibiotic, daptomycin, even though this drug had never been used for treatment. These last-line therapies are more toxic and cause additional side-effects in already compromised patients." Associate Professor Howden said.

"This study highlights the high adaptability of Staph in the face of antimicrobial treatment and suggests we need to improve the way in which we use antibiotics to treat serious bacterial infections." he said.

Explore further: Research provides insight into new drug resistance in hospital microbes

Related Stories

Recommended for you

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Food-poisoning bacteria may be behind Crohn's disease

October 19, 2016

People who retain a particular bacterium in their gut after a bout of food poisoning may be at an increased risk of developing Crohn's disease later in life, according to a new study led by researchers at McMaster University.

Neurodevelopmental model of Zika may provide rapid answers

October 19, 2016

A newly published study from researchers working in collaboration with the Regenerative Bioscience Center at the University of Georgia demonstrates fetal death and brain damage in early chick embryos similar to microcephaly—a ...

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.