No need to shrink guts to have a larger brain

November 9, 2011

Brain tissue is a major consumer of energy in the body. If an animal species evolves a larger brain than its ancestors, the increased need for energy can be met by either obtaining additional sources of food or by a trade-off with other functions in the body. In humans, the brain is three times larger and thus requires a lot more energy than that of our closest relatives, the great apes. Until now, the generally accepted theory for this condition was that early humans were able to redirect energy to their brains thanks to a reduced digestive tract. Zurich primatologists, however, have now disproved this theory, demonstrating that mammals with relatively large brains actually tend to have a somewhat bigger digestive tract.

The so-called expensive-tissue hypothesis, which suggests a trade-off between the size of the brain and the size of the , has been challenged by researchers at the University of Zurich. They have shown that brains in mammals have grown over the course of evolution without the digestive organs having to become smaller.

Ana Navarrete, the first author on the study published today in Nature, has studied hundreds of from zoos and museums. "The data set contains a hundred species, from the stag to the shrew," explains the PhD student. The scientists involved in the study then compared the size of the brain with the fat-free body mass. Senior author Karin Isler stresses that, "it is extremely important to take an animal's adipose deposits into consideration as, in some species, these constitute up to half of the body mass in autumn." But even compared with fat-free , the size of the brain does not correlate negatively with the mass of other organs.

More fat, smaller brain

Nevertheless, the storage of fat plays a key role in brain size evolution. The researchers discovered another rather surprising correlation: the more fat an can store, the smaller its brain. Although adipose tissue itself does not use much energy, fat animals need a lot of energy to carry extra weight, especially when climbing or running. This energy is then lacking for potential brain expansion. "It seems that large adipose deposits often come at the expense of mental flexibility," says Karin Isler. "We humans are an exception, along with whales and seals – probably because, like swimming, our bipedalism doesn't require much more energy even when we are a bit heavier."

Interplay of energetic factors

The rapid increase in and the associated increase in energy intake began about two million years ago in the genus Homo. Based on their extensive studies of animals, the Zurich researchers propose a scenario in which several energetic factors are involved: "In order to stabilize the brain's energy supply on a higher level, prehistoric man needed an all-year, high-quality source of food, such as underground tubers or meat. As they no longer climbed every day, they perfected the art of walking upright. Even more important, however, is communal child care," says Karin Isler. Because ape mothers do not receive any help, they can only raise an offspring every five to eight years. Thanks to communal care for mothers and children, humans can afford both: a huge brain and more frequent offspring.

More information: Ana F. Navarrete, Carel P. van Schaik, and Karin Isler. Energetics and the evolution of human brain size. Nature. November 9, 2011. doi:10.1038/nature10629

Related Stories

Recommended for you

Teen brains facilitate recovery from traumatic memories

May 25, 2016

Unique connections in the adolescent brain make it possible to easily diminish fear memories and avoid anxiety later in life, according to a new study by Weill Cornell Medicine researchers. The findings may have important ...

Neuroscientists illuminate role of autism-linked gene

May 25, 2016

A new study from MIT neuroscientists reveals that a gene mutation associated with autism plays a critical role in the formation and maturation of synapses—the connections that allow neurons to communicate with each other.

Study identifies how brain connects memories across time

May 23, 2016

Using a miniature microscope that opens a window into the brain, UCLA neuroscientists have identified in mice how the brain links different memories over time. While aging weakens these connections, the team devised a way ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.