Researchers discover possible key to degenerative nerve diseases

November 17, 2011
Researchers discover possible key to degenerative nerve diseases
Fruit fly eye.

(Medical Xpress) -- Researchers at the University of Wisconsin-Madison and collaborators have discovered a powerful new protein in the eye of the fruit fly that may shed light on blinding diseases and other sensory problems in humans.

Reporting in the Nov. 16, 2011, issue of Neuron, the scientists note that similar but yet- to-be-identified proteins in the eye and brain could help explain age-related macular degeneration and retinitis pigmentosa, as well as Huntington's, Parkinson's, Alzheimer's and .

The protein, which the scientists have named XPORT, serves as a molecular chaperone for two important proteins that are key to sensory activities in the eye. One protein, rhodopsin, is responsible for absorbing light, and the other protein, TRP, is a channel that plays a role in into cells. XPORT guides the two proteins from the place where they are made in the cell to the location where they do their jobs.

This intricate process of chaperoning includes synthesis, folding, assembly, quality control, transport and targeting of proteins to their appropriate locations, explains senior author Dr. Nansi Jo Colley of the UW School of Medicine and Public Health. The complex process is prone to error, and a malfunction in any of the steps can have dire consequences in tissues.

"Accumulation of misfolded proteins often leads to severe pathology and cell death, producing blinding diseases and other neurodegenerative diseases," says Colley, a professor in the Department of Ophthalmology and Visual Sciences, the Department of Genetics and the Eye Research Institute. "Molecular chaperones are one of the first lines of defense in these fundamental processes."

Colley and her team discovered XPORT as a result of screening a collection of 900 fruit-fly mutants that undergo . The XPORT mutant displayed retinal degeneration and defects in rhodopsin and TRP.

"TRP channels play a vital role as , regulating calcium entering cells involved in vision, taste, olfaction, hearing and touch," says Colley, adding that the channels are found in many organisms and tissues. "Defective TRP channels can cause night blindness in certain people."

The first author on the paper, Erica Rosenbaum, a doctoral student in the UW Neuroscience Training Program where Colley is a faculty member, joined with Colley and UW collaborators Kimberly S. Brehm and Eva Vasilijevic, as well as Che-Hsiung Liu and Roger C. Hardie at Cambridge University. Together they identified the mutation and discovered a small novel gene never described before.

They named the protein XPORT, for exit protein of rhodopsin and TRP.

In their experiments, the scientists showed that XPORT forms a complex with and TRP, and is required to successfully transport the two proteins to a specific location on the cell surface. They also determined that XPORT is essential for cell survival-mutations in XPORT prevented the two proteins from moving through the trafficking pathway, and this ended in retinal degeneration and blindness in the fly.

XPORT was also found to interact closely with another family of called heat shock proteins, which are indispensable in the folding of newly synthesized proteins.

"Heat shock proteins have also been implicated as agents that protect nerve cells from degeneration," Colley says, "so XPORT or XPORT-like proteins might have therapeutic potential as well."

While XPORT is an eye-specific protein that is expressed in flies and other insects, Colley expects that a protein very similar to XPORT exists in humans.

The lab works on because, as Colley says, "It is an invaluable model system for unraveling the complexity of many stemming from misfolding and aggregation. Studies using molecular genetics in the fruit fly are already greatly improving our ability to treat and perhaps even prevent these diseases."

Explore further: New study uncovers how brain cells degrade dangerous protein aggregates

Related Stories

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.