Neurological disorder impacts brain cells differently

November 9, 2011

In a paper published in the Nov. 9 issue of the Journal of Neuroscience, researchers at the University of California, San Diego School of Medicine and University of Washington describe in deeper detail the pathology of a devastating neurological disorder, but also reveal new cellular targets for possibly slowing its development.

Spinocerebellar ataxia type 7 (SCA7) is an inherited neurological disorder in which in the cerebellum and brainstem degenerate, resulting in progressive loss of physical coordination and possible blindness. Its pathology is similar to other like Parkinson's, Huntington's and . And like them, it's currently incurable.

The scientists, led by Al La Spada, MD, PhD, chief of the division of genetics in the UC San Diego department of pediatrics, and professor of cellular and molecular medicine, neurosciences and biological sciences, used a variety of transgenic mouse models to show that SCA7 results from genetic dysfunction not just in affected neurons, but also in associated non-neuronal support cells.

"The is quite complicated, with neurons interacting with each other and with other cell types. So it shouldn't be a surprise that the disease process is similarly complex," said La Spada, who is also associate director of the UC San Diego Institute for Genomic Medicine. "We show that dysfunction in a variety of cell types contributes to SCA7, and that if you can improve function in any of these cell types, you have a reasonable chance of improving treatment of the disease."

La Spada and colleagues created a transgenic mouse in which the key that causes SCA7 could be easily manipulated. The mouse was then bred with other mouse models that eliminated the protein from specific affected by SCA7: Purkinje neurons (large cells in the responsible for ), Bergmann glia (support cells found in the cerebellum) and cells in the olivary complex (part of the brainstem controlling body movement).

By creating and comparing mice that expressed the mutant gene only in targeted cells, La Spada said the scientists made two unexpected discoveries: First, when the gene mutation was eliminated from Bergmann glia, neurodegeneration continued unabated and still involved dysfunction and degeneration of the Bergmann glia themselves. Second, when the mutation was excised from Purkinje neurons and the olivary complex, there was significantly less neurological damage and Bergmann glia remained intact.

"The first result highlights the relatively new idea that degeneration goes both ways," said La Spada. "It isn't just neurons becoming affected when their support cells dysfunction. The Bergmann glia didn't express the mutant gene, but they still degenerated. This shows the bilateral relationship between neurons and non-neuronal cells. They're equal partners, in both normal functioning and in disease.

"The second result underscores the relevance of Purkinje cells and the olivary neuron circuit in the brainstem to SCA7. When it's dysfunctional, degeneration occurs. This is crucial for our understanding of this disease, and should enable us to develop more specific therapeutic approaches. Although we have our work cut out for us, we now have a better idea of what we're up against."

Explore further: Non-coding RNA has role in inherited neurological disorder -- and maybe other brain diseases too

Related Stories

Recommended for you

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

Neural basis of multitasking identified

September 1, 2015

What makes someone better at switching between different tasks? Looking for the mechanisms behind cognitive flexibility, researchers at the University of Pennsylvania and Germany's Central Institute of Mental Health in Mannheim ...

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.