Conducting how neurons fire

Figure 1: Changing a neuron’s membrane conductance of ions can switch its response to a neurotransmitter from excitation to inhibition. © 2011 Alexey Semyanov

Contrary to expectations that the neurotransmitter GABA only inhibited neuronal firing in the adult brain, RIKEN-led research has shown that it can also excite interneurons in the hippocampus of the rat brain by changing the conductance of ions across the membranes of these cells.

According to , activation of the GABAA receptor subtype at the communication junction between neurons—the synapse—strongly increases membrane of , triggering a process called shunting, which inhibits neuronal firing. Led by Alexey Semyanov of the RIKEN Brain Science Institute in Wako, Japan, the team demonstrated that activation of these receptors outside of synaptic junctions, so-called ‘extrasynaptic receptors’ can also excite the neurons.

Further activation of these extrasynaptic receptors by application of higher concentrations of GABA turn excitation into inhibition (Fig. 1). “To our knowledge, this is the first demonstration that changes in membrane conductance can switch the action of a from excitation to inhibition,” Semyanov says.

Semyanov and colleagues treated slices of the mouse with low or high concentrations of GABA and compared the effects. They showed that the more GABA they added, the more they could detect an increase in the conductance of the membranes of hippocampus cells called CA1 interneurons. The increased conductance was mediated through extrasynaptic GABAA receptors.

The CA1 interneurons could spontaneously fire action potentials—electrical impulses that transfer signals in the network of interconnected neurons. Adding low concentrations of GABA increased the rate of action potential firing, while high concentrations of GABA reduced action potential firing in the . Because the concentration of GABA that slowed neuronal firing had also enhanced membrane conductance, the researchers argue that increasing this conductance by activating extrasynaptic GABAA receptors can result in inhibition via shunting along the membrane, which would cause a decrease in action potential generation in the neurons.

The hippocampus plays a key role in learning and memory, and GABA concentrations are known to increase in this part of the brain during exploratory behavior in rats. The findings therefore raise the intriguing possibility that changes in GABA concentration in the brain during some behavioral tasks could bidirectionally change neuronal excitability; this could be a characteristic of the hippocampal neuronal network that may be required for some behavioral tasks in animals.

“Many clinically used drugs, such as sedatives or anti-epileptics, target GABA receptors,” notes Semyanov. “Our findings could potentially explain their therapeutic action as well as some of their unwanted side effects.”

More information: Song, I., Savtchenko, L. & Semyanov, A. Tonic excitation or inhibition is set by GABAA conductance in hippocampal interneurons. Nature Communications 2, 376 (2011). www.nature.com/ncomms/journal/v2/n7/abs/ncomms1377.html

add to favorites email to friend print save as pdf

Related Stories

A step forward in targeted pain therapy

Jan 22, 2008

Our bodies sense painful stimuli through certain receptors located in the skin, in joints and many internal organs. Specialized nerve fibers relay these signals coming from the periphery to the brain, where pain becomes conscious. ...

Secretions of the mind

Feb 25, 2011

A molecule called calcium-dependent activator protein for secretion 2 (CAPS2) promotes the secretion of a neurotrophic factor that is critical for the proper development and survival of networks of interneurons ...

Memory's master switch

Jul 29, 2010

Neuroscientists have long wondered how individual connections between brain cells remain diverse and "fit" enough for storing new memories. Reported in the prestigious science journal Neuron, a new study led by Dr. Inna S ...

Recommended for you

Know the brain, and its axons, by the clothes they wear

10 hours ago

(Medical Xpress)—It is widely know that the grey matter of the brain is grey because it is dense with cell bodies and capillaries. The white matter is almost entirely composed of lipid-based myelin, but ...

Turning off depression in the brain

Apr 17, 2014

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Rapid whole-brain imaging with single cell resolution

Apr 17, 2014

A major challenge of systems biology is understanding how phenomena at the cellular scale correlate with activity at the organism level. A concerted effort has been made especially in the brain, as scientists are aiming to ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Tausch
not rated yet Nov 25, 2011
Extraordinary complexity in light of the fact that a single neuron can have up to 5000 dendrites - each having an ability for inhibitory/excitable bidirectional exchange.

Extraordinary complexity requires extraordinary oversight.
Microglia have extraordinary oversight maintaining extraordinary complexity.