Poor recycling of BACE1 enzyme could promote Alzheimer's disease

November 21, 2011
A study in the Journal of Cell Biology suggests that sluggish recycling of the BACE1 enzyme could promote Alzheimer's disease. Relative to control cells (left), cells short on the protein VPS35 (right) accumulate more BACE1 (red) in endosomes (green). BACE1 in endosomes appears yellow. Credit: Wen, L., et al. 2011. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201105109

Sluggish recycling of a protein-slicing enzyme could promote Alzheimer's disease, according to a study published online on November 21 in The Journal of Cell Biology.

Abeta, the that accumulates in the brains of Alzheimer's patients, is formed when enzymes cut up its parental protein, known as amyloid . One of those enzymes is beta-secretase or BACE1. BACE1 cycles between the Golgi apparatus and the plasma membrane, traveling through endosomes on the way. A protein complex called the retromer helps back from endosomes to the Golgi. Previous studies have found reduced levels of two retromer components, including the protein VPS35, in the brains of patients with Alzheimer's disease.

To find out whether VPS35 affects Alzheimer's disease progression, Wen-Cheng Xiong and colleagues crossed two mouse lines to create animals that are prone to many symptoms of the disease and generate half the normal amount of VPS35. The mice displayed Alzheimer's-like abnormalities earlier than their parental strains, and their brains accumulated more Abeta.

Cells lacking VPS35 carried extra BACE1 in their endosomes, consistent with a defect in retromer-mediated . BACE1 is more active in the acidic interior of endosomes than in the more basic surroundings of the Golgi apparatus. Thus, by leaving more BACE1 trapped in endosomes, the decline in VPS35 levels could enhance BACE1 activity and generate more Abeta. Although no VPS35 mutations have so far turned up in Alzheimer's patients, the protein's level in the brain dwindles in aging mice. The researchers suspect that certain Alzheimer's disease risk factors, such as oxidative stress, also diminish VPS35 levels in the brain.

Explore further: A mutation in a protein-sorting gene is linked with Parkinson's disease

More information: Wen, L., et al. 2011. J. Cell Biol. dx.doi.org/10.1083/jcb.201105109

Related Stories

Road block as a new strategy for the treatment of Alzheimer's

August 22, 2011

Blocking a transport pathway through the brain cells offers new prospects to prevent the development of Alzheimer's. Wim Annaert and colleagues of VIB and K.U. Leuven discovered that two main agents involved in the inception ...

Recommended for you

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.