Researchers reveal potential treatment for sickle cell disease

November 2, 2011
The University of Michigan Health System's Dr. Andrew D. Campbell leads a laboratory study to reveal a potential new treatment for sickle cell disease. Credit: University of Michigan Health System

A University of Michigan Health System laboratory study reveals a key trigger for producing normal red blood cells that could lead to a new treatment for those with sickle cell disease.

The study, conducted in mice, appears in this week's early edition of the , and holds promise for preventing the painful episodes and organ damage that are common complications of .

According to the U-M study, increasing the expression of the proteins, TR2 and TR4, more than doubled the level of fetal hemoglobin produced in sickle cell mice and reduced organ damage.

It's the first time specific proteins have been targeted to prevent a disease, authors say.

"The vast majority of sickle cell disease patients are diagnosed early in childhood when adult hemoglobin normally replaces fetal hemoglobin, but the severity of the disease can differ markedly, correlating most strongly with the level of fetal hemoglobin present in red cells," says pediatrician and lead study author Andrew D. Campbell, M.D., director of the Pediatric Comprehensive Sickle Cell Program at the U-M Cancer Center.

Sickle cell is an inherited blood disorder impacting hundreds of thousands of patients worldwide that causes normal to change shape to a crescent moon.

The result is life-long debilitating pain episodes, chronic and significantly shortened . But a small number of sickle cell patients are born with a high enough fetal hemoglobin level to moderate these complications.

The study team, that included pediatric hematologists, cell and developmental biologists and pathology experts at U-M and the University of Tsukuba, Japan, demonstrated a potential method for boosting the fetal by modulating TR2/TR4 expression.

"While the average fetal hemoglobin was 7.6 percent in the sickle cell mice, the TR2/TR4 treated sickle cell mice had an average fetal hemoglobin of 18.6 percent," says senior study author James Douglas Engel, Ph.D. , professor and chair of the U-M's Cell and Development Biology Department.

He adds that anemia and red blood cell turnover all improved within the TR2/TR4 mice. Additional studies, including clinical trials, would be requiredto determine if the technique could help humans.

"Currently hydroxyurea is the only FDA approved drug known to increase the levels of within sickle cell disease patients and a substantial number of patients do respond to it," says Campbell, the pediatric hematology oncology specialist. "But the long term consequences for hydroxyurea are unknown, especially in children."

Explore further: Thalidomide analog appears worthy opponent of sickle cell disease

More information: "Forced TR2/TR4 Expression in Sickle Cell Disease Mice Confers Enhanced Fetal Hemoglobin Synthesis and Alleviated Disease Phenotypes," Proceedings of the National Academy of Sciences, Oct. 31, 2011.

Related Stories

Recommended for you

High-fat diet starves the brain

April 29, 2016

A high-fat diet of three days in mice leads to a reduction in the amount of glucose that reaches the brain. This finding was reported by a Research Group led by Jens Brüning, Director at the Max Planck Institute for Metabolism ...

A vitamin that stops the aging process of organs

April 28, 2016

Nicotinamide riboside (NR) is pretty amazing. It has already been shown in several studies to be effective in boosting metabolism. And now a team of researchers at EPFL's Laboratory of Integrated Systems Physiology (LISP), ...

Lifestyle has a strong impact on intestinal bacteria

April 28, 2016

Everything you eat or drink affects your intestinal bacteria, and is likely to have an impact on your health. That is the finding of a large-scale study led by RUG/UMCG geneticist Cisca Wijmenga into the effect of food and ...

Tiny microscopes reveal hidden role of nervous system cells

April 28, 2016

A microscope about the size of a penny is giving scientists a new window into the everyday activity of cells within the spinal cord. The innovative technology revealed that astrocytes—cells in the nervous system that do ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.