Scientists identify key area that could sever communication between brain and heart in disease

November 28, 2011

A team of neuroscientists and anaesthetists, who have been using pioneering techniques to study how the brain regulates the heart, has identified a crucial part of the nervous system whose malfunction may account for an increased risk of death from heart failure. The findings, published online (ahead of print) in the Journal of Physiology, could lead to more targeted therapies to help reduce serious illness and death in cardiovascular disease.

The research team, led by Dr Tony Pickering and Professor Julian Paton from the University of Bristol and colleague Professor Robin McAllen from the Florey Neuroscience Institute in Melbourne, developed novel methods which enabled them to explore the activity of nerve cells as they control the beating heart.

The brain controls the heart through two divisions of the nervous system; parasympathetic (vagal) and sympathetic nerves. One of these nerves, the vagus, acts to slow heart rate as part of protective cardiovascular reflexes, which are vital for . A loss of vagal control is a major risk factor in human cardiovascular diseases such as heart failure and hypertension.

Vagal information to the heart is transmitted through a special group of that remarkably lie on and within the beating . Until now, these important neurones have proved especially difficult to access and record in a system with preserved natural connections. However, academics at the Bristol Heart Institute and Bristol Neuroscience have developed a that allows the neurones to be held stable while the heart is still beating and their central neural connectivity remains intact.

Using this method the researchers were able to produce high-precision recordings from the cardiac ganglion neurones on the surface of the whilst retaining their inputs from the nervous system.

The results reveal how these neurones process their inputs and demonstrate that the ganglion plays a key role in regulating the level of vagal tone reaching the heart. This identifies the cardiac ganglion as a site at which the vagal transmission may fail and therefore a potential target for interventions to restore vagal control in cardiovascular diseases.

Dr Pickering, Wellcome Senior Clinical Research Fellow, Reader in Neuroscience and Consultant in Anaesthesia in the University of Bristol's School of Physiology and Pharmacology, said: "These findings are important because they clearly show the cardiac ganglion as a key player in determining the level of vagal tone reaching the heart.

"As loss of vagal tone is found in a number of cardiovascular diseases such as heart failure, following heart attack, in high blood pressure and diabetes, and is associated with poor prognosis and an increased risk of death, our results indicate that therapies targeted at the cardiac ganglion could restore vagal tone and potentially improve outcomes."

Helene Wilson, Research Advisor at the British Heart Foundation (BHF), said: "The vagus nerves are absolutely vital for the control of the speed and regularity of our heart's beat. We don't know a great deal about how the vagus nerves exert this control, and researchers have found it very hard to study it - partly because of the motion of the heart as it beats. These researchers have now developed a technique to study the processes in an intact vagus nerve which is still attached to heart, and have already helped us understand the process better. New insights into how the vagus nerves transmit their effects on the could lead to important new ways to treat patients with diseases such as , arrhythmias and hypertension."

Related Stories

Recommended for you

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

Sleep makes our memories more accessible, study shows

July 27, 2015

Sleeping not only protects memories from being forgotten, it also makes them easier to access, according to new research from the University of Exeter and the Basque Centre for Cognition, Brain and Language. The findings ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.