New TB treatment limits infection while reducing drug resistance

November 16, 2011

It's estimated that nearly one-third of the world's population -- more than two billion people -- are infected with Mycobacterium tuberculosis. According to the World Health Organization, 5 to 10 percent of infected people eventually develop active tuberculosis and can transmit the bacterium to others. Almost two million die from the disease each year. But the current treatment regimen for the disease is long and arduous, making patient compliance difficult. As a result, some strains of the bacteria have become resistant to many or all of the available antibiotics.

A team of researchers has shown that M. tuberculosis and several of its close relatives, including M. marinum, exploit a family of host enzymes known as ABL-family kinases to gain entry into host cells and to survive once inside. The researchers also showed that imatinib, an Abl-family inhibitor, limits infection, and works just as well against antibiotic . Also, when given alongside traditional front-line antibiotics, the drugs worked synergistically to enhance their effectiveness.

The bottom line: by targeting the host—not the mycobacteria itself—researchers were able to reduce the host's mycobacteria load, and even target antibiotic-resistant strains, all while enhancing the effectiveness of front-line antibiotics.

"This study implicates host tyrosine kinases in entry and intracellular survival of M. tuberculosis and M. marinum and suggests that imatinib may have therapeutic efficacy against tuberculosis," says Daniel Kalman, PhD, lead investigator of the study. Kalman is associate professor of pathology in Emory University School of Medicine. Imatinib is known commercially as Gleevec and is already FDA approved.

The study appears online Nov. 16, 2011 and in the Nov. 17, 2011 print issue of Cell Host & Microbe.

Specifically, the researchers found that M. tuberculosis and its relatives exploit ABL within the to gain entry, and then again once inside the cell, to prevent the formation of phagolysosomes. Phagolysosomes normally fuse with lysosomes, which contain enzymes that can break down their contents.

"Once inside the cell, tuberculosis hangs out in phagocytic cells in a compartment called the phagosome," says Kalman. "But what the Mycobacterium does once inside the phagosome is very crafty. It stops the phagosome from fusing with the lysosome, where the bacteria could be killed, and instead replicates and isolates itself. Inhibiting ABL with Gleevec disrupts this carefully orchestrated bacterial survival mechanism, and tips the balance back in our favor."

Because Gleevac targets the host rather than the pathogen it is less likely to engender resistance compared with conventional antibiotics," says Kalman. "And by reducing bacterial load, imatinib will likely reduce the possibility of M. tuberculosis developing resistance against co-administered conventional , which could extend the lifespan of these drugs."

Related Stories

Recommended for you

The 'love hormone' may quiet tinnitus

September 23, 2016

(HealthDay)—People suffering from chronic ringing in the ears—called tinnitus—may find some relief by spraying the hormone oxytocin in their nose, a small initial study by Brazilian researchers suggests.

Bile acid uptake inhibitor prevents NASH / fatty liver in mice

September 21, 2016

Drugs that interfere with bile acid recycling can prevent several aspects of NASH (nonalcoholic steatohepatitis) in mice fed a high-fat diet, scientists from Emory University School of Medicine and Children's Healthcare of ...

New therapeutic target for Crohn's disease

September 20, 2016

Research from the Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a promising new target for future drugs to treat inflammatory bowel disease (IBD). The study, published today in Cell Reports, also indicates ...

Mosquitoes, Zika and biotech regulation

September 19, 2016

In a new Policy Forum article in Science, NC State professor Jennifer Kuzma argues that federal authorities are missing an opportunity to revise outdated regulatory processes not fit for modern innovations in biotechnology, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.