How unchecked alarms can spark autoimmune disease

By Carly Hodes
A neutrophil (yellow), the most abundant white blood cell type and the first line of defense against invading microbes, engulfs Bacillus anthracis (orange), the agent of anthrax. The bacteria break down, releasing DNA that triggers an immune response. Electron micrograph scan by Volker Brinkmann

(Medical Xpress) -- One in five Americans suffers from autoimmune disease, in which the immune system goes off-track and attacks the body's own cells. Cornell researchers have identified a signaling mechanism in immune-system cells that may contribute to this mistake, opening the door for possible new therapies for autoimmune diseases such as lupus and arthritis.

Cynthia Leifer, assistant professor of microbiology and immunology in the College of Veterinary Medicine, and colleagues described the mechanism in the August issue of the European . The problem lies in what are called innate immune cells, the first responders to infection.

"Innate immune cells have internal watchdogs called TLR-9 that set off alarms whenever they encounter invaders," said Leifer. "They look for general classifying patterns [in DNA] to determine whether something is a virus, bacterium, protozoan, or part of self."

However, some of these patterns exist both in invading organisms and the body's own cells, so mistakes can arise.

"We are mapping the critical regulatory mechanisms that keep these receptors from responding to self-DNA so that we can know if and how they predispose people to when they fail," Leifer said.

Innate immune cells engulf things that look dangerous, tear them open, and release their components, including DNA. When TLR-9 receptors see DNA that identifies , they send a signal to fire up more immune-system activity, including inflammation and the creation of antibodies. But before a receptor can work, enzymes in the cell must prepare it by chopping off part of the and leaving a part that can bind to microbe DNA.

From there, Leifer believes it's a numbers game. If too many receptors are prepared, they may respond to the small amount of self-DNA that makes its way into , triggering an . So the immune cell has a , an enzyme pathway that cuts prepared receptors in a second place.

Working with cells in culture, Leifer identified this second chopping event, which cuts TLR-9 at a different site. This produces a molecule that binds to DNA, blocking it from reaching the prepared receptors, and does not send a signal.

"People without have the right balance of these two chopping events," Leifer said. "Our studies suggest that people with a propensity for these diseases might have a defect in this pathway that allows more prepared receptors to signal for immune responses. This may be a potential target for therapies designed to help quiet those alarms."

A second but interrelated problem Leifer has tackled involves how TLR-9 moves through an immune cell from the placewhere it is created to its working site. In earlier work she described the protein sequences in TLR-9 that act as address labels guiding where the receptor travels.

"We think they're interrelated because if you don't travel properly you don't get chopped properly," she said. "If TLR-9 ends up in the wrong place at the wrong time, it can sound a false alarm.

Leifer's research is supported by the National Institutes of Health.

Related Stories

B cells can act alone in autoimmune disease

Aug 07, 2008

B cells, the source of damaging autoantibodies, have long been thought to depend upon T cells for their activation and were not considered important in the initiation of autoimmune diseases like lupus or rheumatoid arthritis.

Molecular 'trip switch' shuts down inflammatory response

Dec 13, 2007

Like a circuit breaker that prevents electrical wiring from overheating and bringing down the house, a tiny family of three molecules stops the immune system from mounting an out-of-control, destructive inflammatory response ...

Scientists find key culprits in lupus

Jun 29, 2009

The more than 1.5 million Americans with systemic lupus erythematosus (or lupus) suffer from a variety of symptoms that flare and subside, often including painful or swollen joints, extreme fatigue, skin rashes, fever, and ...

Recommended for you

Newly discovered bacterial defence mechanism in the lungs

53 minutes ago

A new study from Karolinska Institutet presents a previously unknown immunological mechanism that protects us against bacterial infections in the lungs. The study is being published in the American Journal of Respiratory an ...

Neutralising antibodies for safer organ transplants

22 hours ago

Serious complications can arise following kidney transplants. If dialysis is required within the first seven days, then the transplanted organ is said to have a Delayed Graft Function (DGF), and essentially ...

User comments