A brighter future for infertility treatment: study

December 5, 2011
A brighter future for infertility treatment: study
The various stages of sperm cell development.

(Medical Xpress) -- Male infertility could soon have a boost through new treatments at a sub-DNA 'epigenetic' level, according to researchers from The Australian National University.

The research team, led by Professor David Tremethick of The John Curtin School of Medical Research at ANU, have uncovered a new mechanism of gene activation which will have important implications in understanding how cellular differentiation is achieved. In the future, it may also allow the development of new approaches to treat . Their research is published in the latest issue of .

The team which included post-doctoral researchers Tanya Soboleva and Maxim Nekrasov made the breakthrough by looking at what’s happening in our bodies at the epigenetic level, which controls how our DNA is expressed.

“Epigenetic information goes beyond DNA-stored information essential for interpreting our genome,” said Professor Tremethick. “There are over 250 different cell types in the human body, and while the DNA sequence of these is essentially the same, their epigenetic information or profiles are very different. Additionally, our entire is compacted into a structure known as chromatin.

“Epigenetic information controls gene expression, ensuring that only genes for a specific cell type are turned on, while inappropriate genes are switched off by ‘opening’ or ‘closing’ the structure of chromatin.

“Regulation of this epigenetic information significantly contributes to embryonic development, and ensures our capacity to reproduce. Mis-regulation of our epigenetic code has been directly implicated in many common human diseases, as well as contributing to human infertility,” he said.

The research team’s study characterized the epigenetic changes that occur during sperm development, and in doing so identified a novel epigenetic mark, called H2A.Lap1.

“Our research revealed that H2A.Lap1 regulates sperm gene expression by directly opening the chromatin structure at the start site of active genes,” said Professor Tremethick.

“The study has therefore uncovered a new way to activate , which could help us understand how is achieved. In the future, this could also allow for the development of treatments for male which operate at the epigenetic level.”

Explore further: Silence of the genes

Related Stories

Silence of the genes

July 22, 2011

A molecular mechanism by which gene silencing is regulated at the genome-wide level in plants has been uncovered by a research team led by Motoaki Seki of the RIKEN Plant Science Center, Yokohama, Japan. The researchers ...

Recommended for you

New target could eliminate lurking cancer stem cells

November 27, 2015

Scientists from Trinity College Dublin have identified a novel target that could help to identify 'cancer stem cells' while they are in their inactive state. The scientists could then jolt these cells into action so that ...

New class of RNA tumor suppressors identified

November 23, 2015

A pair of RNA molecules originally thought to be no more than cellular housekeepers are deleted in over a quarter of common human cancers, according to researchers at the Stanford University School of Medicine. Breast cancer ...

Batten disease may benefit from gene therapy

November 11, 2015

In a study of dogs, scientists showed that a new way to deliver replacement genes may be effective at slowing the development of childhood Batten disease, a rare and fatal neurological disorder. The key may be to inject viruses ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.