New study shows how B cells may generate antibodies after vaccination

December 15, 2011
This shows a cell finishing division, with one of the linked daughter cells inheriting more of the stained green protein. Credit: Burton Barnett, Perelman School of Medicine at the University of Pennsylvania

Steve Reiner, MD, professor of Medicine, and Burton Barnett, a doctoral student in the Reiner lab at the Perelman School of Medicine at the University of Pennsylvania, have shown how immune cells, called B lymphocytes, are able to produce daughter cells that are not equal, a finding that might explain how lifelong antibodies are made after vaccination.

How do make daughter cells that are different form one another, rather than splitting into identical daughter cells? The team's paper, published this week online in Science, shows how one cell type can reliably produce cell diversity. Motile B cells that don't have life-long attachments with other cells, as say a layer of do, can receive cues from other immune cells, namely helper T cells, so that they attach to each other and influence the outcome of B-cell division. The researchers showed that a T cell forms a temporary attachment to a B cell, which induces the B cell to divide, resulting in daughter cells that are different on the level of the proteins they inherit. The pairing and dividing occurs in the lymphoid organs, such as the spleen, that respond to vaccination.

B cells circulate throughout the body via the bloodstream, and upon infection are recruited to fight the offending germ. During this fight, the recruited B cells must generate multiple types of daughter cells to be effective. One of these cells makes the antibodies that destroy the germ, and are what make vaccinations effective. The other type of cell improves the quality of the antibodies that can be made.

The Penn team found that B cells segregate a transcriptional protein called Bcl6, the for interleukin-21, and another protein called atypical PKC to one side of the plane of division during , generating unequal inheritance of fate-altering molecules by daughter cells. These three proteins tell the B cell which type of daughter cell to become; and by making with more or less of these proteins, can give rise to cells that are antibody factories through division.

The team is interested in using this discovery to make better vaccines. They are also expecting that the ability of wandering immune cells to give birth to non-identical daughters may explain how our blood cells can also turn into cancers like leukemia.

Explore further: Scientists discover how daughter cells receive the same number of chromosomes

Related Stories

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.