Hide and seek signals

The white blood cells that fight disease and help our bodies heal are directed to sites of infection or injury by 'exit signs' – chemical signals that tell them where to pass through the blood vessel walls and into the underlying tissue. New research at the Weizmann Institute, which appeared in Nature Immunology online, shows how the cells lining blood vessel walls may act as 'selectors' by hiding the signals where only certain 'educated' white blood cells will find them.

In previous studies, Prof. Ronen Alon and his team in the Immunology Department had found that near sites of inflammation, rapidly crawl along the inner lining of the blood vessels with tens of tiny legs that grip the surface tightly, feeling for the exit sign. Such signs consist of migration-promoting molecules called chemokines, which the cells lining the blood vessels – endothelial cells – display on their outer surfaces like flashing lights.

In the new study, Alon and his team, including Drs. Ziv Shulman and Shmuel Cohen, found that not all chemokine signals produced by endothelial cells are on display. They observed the recruitment of subsets of immune cells called effector cells that are the 'special forces' of the immune system: They receive training in the lymph nodes, where they learn to identify a particular newly-invading pathogen and then return to the bloodstream on a search and destroy mission. Like the other white , effector cells crawled on tiny appendages along the lining of inflamed blood vessels near the site of pathogen entry, but rather than sensing surface chemokines, they used their legs to reach into the endothelial cells in search of the migration-promoting chemokines.

As opposed to the external exit signs, these chemokines were held in tiny containers – vesicles – inside the inflamed endothelial cell walls. The effector cells paused in the joins where several cells met, inserting their legs through the walls of several endothelial cells at once to trap chemokines as they were released from vesicles at the endothelial cell membrane. Once they obtained the right chemokine directives, the immune cells were quickly ushered out through the blood toward their final destination.

The researchers think that keeping the chemokines inside the endothelial cells ensures, on the one hand, that these vital signals will be safe from getting washed away in the blood or eaten by various enzymes. On the other hand, it guarantees that only those effector cells with special training – that can make the extra effort to find the signals – will pass through.

Alon: 'We are now seeing that the blood vessel endothelium is much more than just a passive, sticky barrier – it actively selects which recruited cells actually cross the barrier and which will not. The endothelial cells seem to play an active role in showing the immune cells the right way out, though we're not sure exactly how. Moreover, we think that tumors near might exploit these trafficking rules for their benefit by putting the endothelial cells in a quiescent state or making the endothelium produce the 'wrong' chemokines. Thus, immune cells capable of destroying these tumors will not be able to exit the and navigate to the tumor site, while other that aid in cancer growth will.'

Related Stories

White blood cells move like millipedes, scientists show

May 04, 2009

How do white blood cells - immune system 'soldiers' - get to the site of infection or injury? To do so, they must crawl swiftly along the lining of the blood vessel - gripping it tightly to avoid being swept away in the blood ...

Study unlocks origins of blood stem cells

Dec 09, 2011

A research team led by Nancy Speck, PhD, professor of Cell and Developmental Biology at the Perelman School of Medicine at the University of Pennsylvania, has discovered a molecular marker for the immediate ...

Survival niche for cancer cells

Jun 06, 2011

Cancer cells do not grow equally well everywhere in the body. Often, they first create the conditions in which they can grow. Many years ago researchers discovered that solid tumors attract blood vessels to ensure their supply ...

Recommended for you

Clock gene dysregulation may explain overactive bladder

1 hour ago

If you think sleep problems and bladder problems are a fact of life in old age, you may be right. A new report appearing in the November 2014 issue of The FASEB Journal, shows that our sleep-wake cycles are genetically connec ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.