Self-regulation of the immune system suppresses defense against cancer

December 21, 2011

Regulatory T cells, which are part of the body's immune system, downregulate the activity of other immune cells, thus preventing the development of autoimmune diseases or allergies. Scientists at the German Cancer Research Center have now found the activation steps that are blocked by Tregs in immune cells. Since Tregs can also suppress the body's immune defense against cancer, the findings obtained by the DKFZ researchers are important for developing more efficient cancer treatments.

It is vital that the body's own immune system does not overreact. If its key players, the helper T cells, get out of control, this can lead to or allergies. An immune system overreaction against infectious agents may even directly damage organs and tissues.

called ("Tregs") ensure that immune responses take place in a coordinated manner: They downregulate the dividing activity of helper T cells and reduce their production of immune mediators. "This happens through direct contact between regulatory cell and helper cell," says Prof. Peter Krammer of DKFZ. "But we didn't know yet what this contact actually causes in helper cells." The researchers' hypothesis was that the contact with the Tregs affects certain steps in the complex signaling cascade that leads to the activation of the helper T cells.

If the , a sensor molecule on the surface of helper cells, senses foreign or damaged , this will trigger a cascade of biochemical activation reactions. At the end of this signaling cascade, genes that are required for an will be read in the nucleus of helper cells.

Jointly with colleagues from several German research institutes, Peter Krammer, Angelika Schmidt and co-workers have now compared the signaling cascades in helper cells with and without contact to Tregs. The immunologists found out that a short contact of the two types of cells in the culture dish is sufficient to suppress the helper cells. Following Treg contact, the typical release of calcium ions into the plasma of helper cells does not occur. As a result, two important transcription factors, NFkappaB and NFAT, do no longer function. They normally activate genes for immune mediators, thus alerting the immune system.

"The mode of action of Tregs is of great importance for cancer medicine. Many of our colleagues have shown in various types of cancer that Tregs can downregulate the immune response against tumors so that transformed cells escape the . This can contribute to the development and spread of cancer. We are therefore searching for ways to reactivate such suppressed ," said Krammer, explaining the goals of his work. For developing immune therapies against cancer it is also crucial to understand how Tregs work. The researchers are trying to prevent that immune cells which have been painstakingly activated against cancer in the culture dish are immediately suppressed again by Tregs.

Explore further: Researchers find regulatory T-cell clue to help prevent GVHD

More information: Angelika Schmidt, Nina Oberle, Eva-Maria Weiß, Diana Vobis, Stefan Frischbutter, Ria Baumgrass, Christine S. Falk, Mathias Haag, Britta Brügger, Hongying Lin, Georg W. Mayr, Peter Reichardt, Matthias Gunzer, Elisabeth Suri-Payer and Peter H. Krammer: Human Regulatory T Cells Rapidly Suppress T Cell Receptor–Induced Ca2+, NF-κB and NFAT Signaling in Conventional T Cells. Science Signalling 2011, DOI: 10.1126/scisignal.2002179

Related Stories

Researchers find regulatory T-cell clue to help prevent GVHD

October 31, 2011

Graft-versus-host disease (GVHD) is a serious risk in many kinds of cell transplants, including for stem cell transplants carried out when stem cells are partially depleted of conventional T cells, which play an important ...

Recommended for you

Snapshot turns T cell immunology on its head

October 6, 2015

Challenging a universally accepted, longstanding consensus in the field of immunity requires hard evidence. New research from the Australian Research Council Centre of excellence in advanced Molecular imaging has shown the ...

Four gut bacteria decrease asthma risk in infants

September 30, 2015

New research by scientists at UBC and BC Children's Hospital finds that infants can be protected from getting asthma if they acquire four types of gut bacteria by three months of age. More than 300 families from across Canada ...

Flu infection reveals many paths to immune response

September 28, 2015

A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological ...

Immune cells may help fight against obesity

September 15, 2015

While a healthy lifestyle and "good genes" are known to help prevent obesity, new research published on September 15 in Immunity indicates that certain aspects of the immune system may also play an important role. In the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.