Study identifies blood-forming stem cells' growth

January 25, 2012

Scientists with the new Children's Research Institute at UT Southwestern Medical Center have identified the environment in which blood-forming stem cells survive and thrive within the body, an important step toward increasing the safety and effectiveness of bone-marrow transplantation.

Institute investigators led by Dr. Sean Morrison asked which cells are responsible for the that nurtures haematopoietic stem cells, which produce billions of new every day. The answer: endothelial and perivascular cells, which line .

"Although scientists have searched for decades to identify the stem cell home, this is the first study to reveal the cells that are functionally responsible for the maintenance of blood-forming stem cells in the body," said Dr. Morrison, director of the new institute and senior author of the study available Jan. 26 in Nature. "This discovery will lead to the identification of the mechanisms by which cells promote stem cell maintenance and expansion."

Scientists already have determined how to make large quantities of stem cells and how to change these cells into those of the nervous system, skin and other tissues. But they have been stymied by similar efforts to make blood-forming stem cells. A key obstacle has been the lack of understanding about the microenvironment, or niche, in which blood-forming stem cells reside in the body.

In the first breakthrough from the Children's Research Institute, Dr. Morrison's laboratory addressed this issue by systematically determining which cells are the sources of stem cell factor, a protein required for the maintenance of blood-forming stem cells. His team swapped out the mouse gene responsible for stem cell factor with a gene from that encodes . The cells that glowed green were endothelial and perivascular cells, revealing them as the creators of the niche that nurtures healthy blood-forming stem cells.

Additional lab work showed that blood-forming stem cells become depleted if stem cell factor is eliminated from either endothelial or perivascular cells. Loss of stem cell factor from both of these sources caused stem cells to virtually disappear.

The research has implications for bone marrow and umbilical cord blood transplants, Dr. Morrison said. If scientists can identify the remaining signals by which perivascular cells promote the expansion of blood-forming stem cells, then they may be able to replicate these signals in the laboratory. Doing so will make it possible to expand blood-forming prior to transplantation into patients, thereby increasing the safety and effectiveness of this widely used clinical procedure.

Dr. Morrison's paper is the first to emerge from the Children's Research Institute at UT Southwestern, a pioneering venture that combines the medical center's research prowess with the world-class clinical expertise of Children's Medical Center Dallas. Under Dr. Morrison's leadership, the institute is focusing on research at the interface of stem cell biology, cancer, and metabolism that has the potential to reveal new strategies for treating disease.

The institute currently has more than 30 scientists and will eventually include 150 scientists in 15 laboratories led by UT Southwestern faculty members. Dr. Morrison's lab focuses on adult stem cell biology and cancers of the blood, and skin.

Explore further: Molecule dictates how stem cells travel

Related Stories

Molecule dictates how stem cells travel

January 14, 2006

U.S. researchers have defined a molecule that dictates how blood stem cells travel to the bone marrow and establish blood and immune cell production.

Study unlocks origins of blood stem cells

December 9, 2011

A research team led by Nancy Speck, PhD, professor of Cell and Developmental Biology at the Perelman School of Medicine at the University of Pennsylvania, has discovered a molecular marker for the immediate precursors of ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.