Study identifies blood-forming stem cells' growth

January 25, 2012

Scientists with the new Children's Research Institute at UT Southwestern Medical Center have identified the environment in which blood-forming stem cells survive and thrive within the body, an important step toward increasing the safety and effectiveness of bone-marrow transplantation.

Institute investigators led by Dr. Sean Morrison asked which cells are responsible for the that nurtures haematopoietic stem cells, which produce billions of new every day. The answer: endothelial and perivascular cells, which line .

"Although scientists have searched for decades to identify the stem cell home, this is the first study to reveal the cells that are functionally responsible for the maintenance of blood-forming stem cells in the body," said Dr. Morrison, director of the new institute and senior author of the study available Jan. 26 in Nature. "This discovery will lead to the identification of the mechanisms by which cells promote stem cell maintenance and expansion."

Scientists already have determined how to make large quantities of stem cells and how to change these cells into those of the nervous system, skin and other tissues. But they have been stymied by similar efforts to make blood-forming stem cells. A key obstacle has been the lack of understanding about the microenvironment, or niche, in which blood-forming stem cells reside in the body.

In the first breakthrough from the Children's Research Institute, Dr. Morrison's laboratory addressed this issue by systematically determining which cells are the sources of stem cell factor, a protein required for the maintenance of blood-forming stem cells. His team swapped out the mouse gene responsible for stem cell factor with a gene from that encodes . The cells that glowed green were endothelial and perivascular cells, revealing them as the creators of the niche that nurtures healthy blood-forming stem cells.

Additional lab work showed that blood-forming stem cells become depleted if stem cell factor is eliminated from either endothelial or perivascular cells. Loss of stem cell factor from both of these sources caused stem cells to virtually disappear.

The research has implications for bone marrow and umbilical cord blood transplants, Dr. Morrison said. If scientists can identify the remaining signals by which perivascular cells promote the expansion of blood-forming stem cells, then they may be able to replicate these signals in the laboratory. Doing so will make it possible to expand blood-forming prior to transplantation into patients, thereby increasing the safety and effectiveness of this widely used clinical procedure.

Dr. Morrison's paper is the first to emerge from the Children's Research Institute at UT Southwestern, a pioneering venture that combines the medical center's research prowess with the world-class clinical expertise of Children's Medical Center Dallas. Under Dr. Morrison's leadership, the institute is focusing on research at the interface of stem cell biology, cancer, and metabolism that has the potential to reveal new strategies for treating disease.

The institute currently has more than 30 scientists and will eventually include 150 scientists in 15 laboratories led by UT Southwestern faculty members. Dr. Morrison's lab focuses on adult stem cell biology and cancers of the blood, and skin.

Explore further: Researchers find way to help donor adult blood stem cells overcome transplant rejection

Related Stories

Study unlocks origins of blood stem cells

December 9, 2011

A research team led by Nancy Speck, PhD, professor of Cell and Developmental Biology at the Perelman School of Medicine at the University of Pennsylvania, has discovered a molecular marker for the immediate precursors of ...

Recommended for you

An accessible approach to making a mini-brain

October 1, 2015

If you need a working miniature brain—say for drug testing, to test neural tissue transplants, or to experiment with how stem cells work—a new paper describes how to build one with what the Brown University authors say ...

Tension helps heart cells develop normally in the lab

October 1, 2015

The heart is never quite at rest, and it turns out that even in a lab heart cells need a little of that tension. Without something to pull against, heart cells grown from stem cells in a lab dish fail to develop normally.

Dormant viral genes may awaken to cause ALS

September 30, 2015

Scientists at the National Institutes of Health discovered that reactivation of ancient viral genes embedded in the human genome may cause the destruction of neurons in some forms of amyotrophic lateral sclerosis (ALS). The ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.