How the brain puts the brakes on the negative impact of cocaine

Research published by Cell Press in the January 12 issue of the journal Neuron provides fascinating insight into a newly discovered brain mechanism that limits the rewarding impact of cocaine. The study describes protective delayed mechanism that turns off the genes that support the development of addiction-related behaviors. The findings may lead to a better understanding of vulnerability to addiction and as well as new strategies for treatment.

Drug addiction is associated with persistent and abnormal changes in the reward circuitry of the brain, and drug-induced changes in gene expression are thought to contribute to addiction behaviors. Recent research with rodent models of addiction has implicated histone deacetylases (HDACs), which are modulators of gene expression, in the regulation of cocaine-induced behaviors. However, how cocaine regulates the function of HDACs and whether this regulation can modify addiction-related behaviors was not known.

"HDAC5 in the , a key brain region involved in drug abuse, limits the rewarding impact of cocaine and the long-lasting memory of places where the drug was taken, particularly after prior ," explains senior study author Dr. Christopher W. Cowan from the University of Texas Southwestern Medical Center. "However, it was not clear whether this was a passive role for HDAC5 or whether drugs of abuse might regulate its function after drug exposure." In the current study, Dr. Cowan and colleagues explored how cocaine might regulate HDAC5 and the development of drug reward-associated behaviors.

Using a , the researchers discovered that cocaine triggered a novel signaling pathway that caused HDAC5 to move to the , where gene expression occurs, and they found that this process was essential for HDAC5 to limit the development of cocaine reward-associated behaviors. "Our findings reveal a new molecular mechanism by which cocaine regulates HDAC5 function to antagonize the rewarding impact of cocaine, likely by putting a brake on drug-stimulated genes that would normally support drug-induced behavioral changes," concludes Dr. Cowan. "Deficits in this process may contribute to the development of maladaptive behaviors associated with addiction following repeated drug use in humans and may help to explain why some people are more vulnerable to addiction than others."

More information: Taniguchi et al.: “Histone deacetylase 5 limits cocaine reward through cAMP-induced nuclear import.” DOI:10.1016/j.neuron.2011.10.032

Related Stories

Enzyme regulates brain pathology induced by cocaine, stress

Nov 08, 2007

Researchers have uncovered a key genetic switch that chronic cocaine or stress influences to cause the brain to descend into a pathological state. In studies with mice they showed how chronic cocaine changes gene activity ...

Cocaine changes gene activity in mice

Dec 04, 2007

A team of U.S. researchers has found chronic cocaine administration in mice changes the activity of their genes, enhancing the rewarding effect of cocaine.

Cocaine-linked genes enhance behavioral effects of addiction

May 13, 2009

New research sheds light on how cocaine regulates gene expression in a crucial reward region of the brain to elicit long-lasting changes in behavior. The study, published by Cell Press in the May 14th issue of the journal ...

Recommended for you

'Microlesions' in epilepsy discovered by novel technique

Dec 16, 2014

Using an innovative technique combining genetic analysis and mathematical modeling with some basic sleuthing, researchers have identified previously undescribed microlesions in brain tissue from epileptic ...

Thumbs-up for mind-controlled robotic arm (w/ Video)

Dec 16, 2014

A paralysed woman who controlled a robotic arm using just her thoughts has taken another step towards restoring her natural movements by controlling the arm with a range of complex hand movements.

The sense of smell uses fast dynamics to encode odors

Dec 16, 2014

Neuroscientists from the John B. Pierce Laboratory and Yale School of Medicine have discovered that mice can detect minute differences in the temporal dynamics of the olfactory system, according to research ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.