GABA signaling prunes back copious 'provisional' synapses during neural circuit assembly

January 3, 2012

Quite early in its development, the mammalian brain has all the raw materials on hand to forge complex neural networks. But forming the connections that make these intricate networks so exquisitely functional is a process that occurs one synapse at a time. An important question for neuroscience has been: how exactly do stable synapses form? How do nerve cells of particular types know which of their cortical neighbors to "synapse" with, and which to leave out of their emerging networks?

Neuroscientist Z. Josh Huang, a professor at Cold Spring Harbor Laboratory, and his laboratory team spearheaded by graduate student Xiaoyun We tomorrow publish a finding in the that Huang says surprised them, even after years of work on this problem.

In emerging networks being established by GABA – inhibitory brain cells named for the neurotransmitting chemical, gamma aminobutyric acid, that they release – Huang's team found strong evidence that the "default state" is for the cell to make tentative connections promiscuously, with almost every available partner. That much they had anticipated.

The unexpected observation was that GABA proved not to be involved in the initial formation of these tentative or "test" synapses, but rather in the essential process of pruning them back, later, after they had been formed. The net effect of provisional synapse formation and rapid subsequent pruning, Huang says, is "a bit like speed dating."

Huang explains that there are two known mechanisms at work in synapse formation. One is genetic, and involves the recruitment of highly specific neural cell adhesion molecules to the site of a tentative synaptic connection. These adhesion molecules, in lock-and-key fashion, form a physical but reversible glue-like bond between, say, a tentative synaptic projection from one GABA cell's axon and a receiving structure located across a tiny space on a neighboring cell body axon or dendritic filament emanating from another nerve cell. Last year, Huang's team became the first to observe how this process is regulated in living cortical circuits.

In their newly published research, they demonstrate in living basket cell interneurons – an important and prevalent subtype of GABA neuron – that a total blockade of GABA synthesis has no impact on the appearance of the many tentative . "This state of preliminary contact appears to be the default state in these neurons," Huang says.

"GABA turns out to be a kind of discriminatory mechanism. As in speed-dating, in the end you want to form connections with the right partner. And you don't want to spend too much time or too much of your available resources checking each possibility out."

Interestingly, virtually all possibilities for matches -- in this case in terms of physical availability, i.e., proximity -- are seriously considered. GABA's surprising role is to serve as a trigger of the mechanism that swiftly eliminates incompatible contacts. Incompatibility in this context can mean biochemical or functional incongruity.

What is not yet understood, says Huang, is the nature of the pruning mechanism that GABA triggers. "There is some other signaling mechanism 'downstream,' so to speak, of GABA's triggering that performs the pruning. One possibility is that it is linked to GABA receptors. But we do not yet know."

Elucidating that detail is the next scientific objective of the team.

Explore further: Team creates genetic 'GPS' system to comprehensively locate and track inhibitory nerve cells

More information: "GABA Signaling Promotes Synapse Elimination and Axon Pruning in Developing Cortical Inhibitory Interneurons" appears January 4, 2012 in the Journal of Neuroscience. The authors are: Xiaoyun Wu, Yu Fu, Graham Knott, Jiangteng Lu, Graziella Di Cristo and Z. Josh Huang. The paper will be available online January 4 at DOI:10.1523/JNEUROSCI.3189-11.2012

Related Stories

Researchers uncover steps in synapse building, pruning

November 16, 2011

Like a gardener who stakes some plants and weeds out others, the brain is constantly building networks of synapses, while pruning out redundant or unneeded synapses. Researchers at The Jackson Laboratory led by Assistant ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Jan 03, 2012
I suspect the nature of pruning (GABA) is path specific, with dependence on distance/time & signal frequency. I suspect those parameters govern the shape and distribution of the potential (as a function of interaction(speed dates)) that eventually lead to path definitions of optimization (which I suspect is heat minimizing by nature).

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.