Possible new pathway can overcome glioblastoma resistance

Glioblastoma, a lethal brain cancer, is one of the most resistant to available therapies and patients typically live approximately 15 months.

Previous research has focused on the activation of the apoptosis, or cell death, pathway using therapeutic agents such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL); however, the vast majority of these experiments have been stymied by resistance.

"Scientists in this field have been hoping to treat this cancer with this new type of apoptosis pathway-targeted therapeutic drug, and this new information may provide a path forward," said Chunhai "Charlie" Hao, M.D., Ph.D., a neuropathologist at Emory University.

Using human glioblastoma samples and tumor-initiating cells or cancer , Hao and colleagues identified a possible new pathway for targeted therapies. Results of their work are published in Cancer Discovery, the newest journal of the American Association for Cancer Research.

TRAIL treatment often leads to caspase-8-mediated apoptosis. However, study results showed that the A20 E3 ligase is highly expressed in and together with receptor interacting protein 1 (RIP1) and caspase-8, forms a signaling complex. Upon TRAIL interaction with this complex, the A20 E3 ligase triggers ubiquitination of RIP1, interferes with activation of caspase-8 and prevents caspase-8-initiated apoptosis.

"Previous research in this area has been unable to overcome the obstacle created by resistance. This research shows one of the mechanisms for how we can manipulate the ubiquitination process to overcome the resistance to the apoptosis-targeted cancer therapies," said Hao.

Understanding the mechanisms of resistance is vital to developing therapies going forward, according to Hao.

add to favorites email to friend print save as pdf

Related Stories

Protein that promotes cancer cell growth identified

Jul 24, 2009

Scientists at Burnham Institute for Medical Research (Burnham) have found that the Caspase-8 protein, long known to play a major role in promoting programmed cell death (apoptosis), helps relay signals that can cause cancer ...

Cells re-energize to come back from the brink of death

Jun 01, 2007

The discovery of how some abnormal cells can avoid a biochemical program of self-destruction by increasing their energy level and repairing the damage, is giving investigators at St. Jude Children's Research Hospital insights ...

Researchers to publish paper in Molecular Cancer journal

Dec 07, 2011

(Medical Xpress) -- Erxi Wu, assistant professor of pharmaceutical sciences, and Fengfei Wang, research associate in pharmaceutical sciences, co-wrote the article, "β2-adrenoceptor blockage induces G1/S phase arrest ...

Recommended for you

70-gene signature not cost-effective in breast cancer

Oct 18, 2014

(HealthDay)—For patients with node-negative breast cancer (NNBC), the 70-gene signature is unlikely to be cost-effective for guiding adjuvant chemotherapy decision making, according to a study published ...

User comments