Surprise finding redraws 'map' of blood cell production

January 31, 2012
Drs Maria Kauppi (left) and Ashley Ng from the Walter and Eliza Hall Institute in Melbourne, Australia, study blood 'progenitor' cells, which expand and mature in times of stress to replace lost or damaged blood cells. Credit: Walter and Eliza Hall Institute

A study of the cells that respond to crises in the blood system has yielded a few surprises, redrawing the 'map' of how blood cells are made in the body.

The finding, by researchers from the Walter and Eliza Hall Institute, could have wide-ranging implications for understanding such as myeloproliferative disorders (that cause excess production of cells) as well as used to develop new ways of controlling how blood and clotting cells are produced.

The research team, led by Drs Ashley Ng and Maria Kauppi from the institute's Cancer and division, investigated subsets of blood 'progenitor' cells and the signals that cause them to expand and develop into mature blood cells. Their results are published today in the journal of the United States of America.

Dr Ng describes blood progenitor cells as the 'heavy lifters' of the blood system.

"They are the targets for blood cell hormones, called cytokines, which Professor Don Metcalf and colleagues have shown to be critical for regulating blood cell production," Dr Ng said. "In times of stress, such as bleeding, during infection or after chemotherapy, it is really the progenitor cells that respond by replacing lost or damaged blood cells."

Dr Kauppi said the research team was particularly interested in progenitor cells, which produce megakaryocytes, a type of bone marrow cell that gives rise to blood-clotting platelets. "We used a suite of cell surface markers specific to these progenitor cells that allowed us to isolate and characterise the cells," she said.

The researchers were surprised to find that progenitor cells believed only to be able to produce megakaryocytes were also able to develop into .

"We were able to clearly demonstrate that these mouse megakaryocyte progenitor cells have the potential to develop into either megakaryocytes or red in response to cytokines such as thrombopoietin and erythropoietin, which was quite unexpected," Dr Ng said. "In addition, we discovered that other progenitor populations thought to really only make neutrophils and monocytes [other immune cells], were capable of making red blood cell and platelets really well. In effect, we will have to redraw the map as to how red cells and platelets are made in the bone marrow."

Dr Kauppi said the researchers found they could regulate whether the progenitor cell became a megakaryocyte or a red blood cell by using different combinations of cytokines. "Now that we have properly identified the major cells and determined how they respond to cytokine signals involved in red blood cell and platelet production, the stage is set for understanding how these progenitors are affected in health and disease," she said. "We can also better understand, for instance, how genetic changes may lead to the development of certain blood diseases."

Dr Ng said the findings would also help researchers discover new ways in which the can be controlled.

"This research is the first step in the future development of treatments for patients with blood diseases," Dr Ng said. "This may occur either by limiting blood cell production when too many are being made, as with myeloproliferative disorders, or stimulating blood production when the is compromised, such as during cancer treatment or infection." Dr Ng said.

Explore further: 'Back talk' from blood cells to their progenitors is critical to balancing blood supply

Related Stories

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.