Cell signaling discovery provides new hope for blood disorders

February 16, 2012

Walter and Eliza Hall Institute scientists have revealed new details about how cell signalling is controlled in the immune system, identifying in the process potential new therapeutic targets for treating severe blood disorders.

Dr Jeff Babon and Professor Nick Nicola, from the institute's and Cancer and Haematology divisions respectively, study interactions between internal cell signalling proteins called JAKs (Janus kinases) and SOCS (Suppressors of Cytokine Signalling).

Dr Babon said the proteins were essential for maintenance and immune responses.

"JAK proteins are activated in response to blood cell hormones called cytokines and instruct to respond to infection and inflammation," Dr Babon said. "SOCS proteins were discovered at the institute in the early 2000s, and provide a necessary 'negative feedback' response that stops JAKs becoming overactive, which can lead to disease."

Dr Babon said mutations in one particular protein, , are strongly associated with the development of myeloproliferative diseases.

"When JAK2 is mutated, it tells cells to continually multiply. An excessive amount of blood cells of one type are produced, and the bone marrow is overrun, leading to problems with production of other cell types, and eventually ," Dr Babon said.

Myeloproliferative diseases, such as polycythemia vera and essential thrombocytopenia, are serious in which an excessive number of accumulate in the bone marrow. They can be very severe and sometimes fatal, and may progress to acute leukaemias.

In a study published today in the journal Immunity, Dr Babon and Professor Nicola, with colleagues Dr James Murphy and Dr Nadia Kershaw, report on a key discovery about how the proteins JAK2 and SOCS3 interact. They hope the discovery will lead to new strategies for treating myeloproliferative diseases.

"SOCS3 is a key inhibitor of JAK2 proteins in blood and immune cells, but we didn't know exactly how the two proteins interacted to suppress JAK2 function," Dr Babon said. "We wanted to identify which site the SOCS3 protein bound to on the JAK2 protein to inhibit its action, and were surprised to find that SOCS3 binds to a unique site on JAK2 and directly inhibits the protein, rather than outcompeting other molecules."

Dr Babon said the finding could inspire a new class of therapeutic agents for treating myeloproliferative diseases.

"The SOCS3 binding site is a previously unknown part of the JAK2 protein which could be exploited as a drug target, with greater specificity than other drugs that are currently in clinical trials for inhibiting JAK2," he said.

Explore further: Protein key to control, growth of blood cells

Related Stories

Protein key to control, growth of blood cells

August 13, 2008

New research sheds light on the biological events by which stem cells in the bone marrow develop into the broad variety of cells that circulate in the blood. The findings may help improve the success of bone marrow transplants ...

Genetic abnormality may increase risk of blood disorders

March 15, 2009

Researchers at Memorial Sloan-Kettering Cancer Center (MSKCC) have shown for the first time that a tendency to develop some blood disorders may be inherited. Their research, published online today in Nature Genetics, identifies ...

Recommended for you

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.