Cocaine and the teen brain: Study offers insights into addiction

When first exposed to cocaine, the adolescent brain launches a strong defensive reaction designed to minimize the drug's effects, Yale and other scientists have found. Now two new studies by a Yale team identify key genes that regulate this response and show that interfering with this reaction dramatically increases a mouse's sensitivity to cocaine.

The findings may help explain why risk of drug abuse and addiction increase so dramatically when begins during .

The results were published in the Feb. 14 and Feb. 21 issues of the Journal of Neuroscience.

Researchers including those at Yale have shown that vulnerability to cocaine is much higher in adolescence, when the brain is shifting from an explosive and plastic growth phase to more settled and refined characteristic of adults. Past studies at Yale have shown that the neurons and their in adolescence change shape when first exposed to cocaine through molecular pathway regulated by the gene integrin beta1, which is crucial to the development of the nervous system of vertebrates.

"This suggests that these structural changes observed are probably protective of the neurocircuitry, an effort of the neuron to protect itself when first exposed to cocaine," said Anthony Koleske, professor of and biochemistry and of neurobiology and senior author of both papers.

In the latest study, Yale researchers report when they knocked out this pathway, mice needed approximately three times less cocaine to induce than mice with an intact pathway.

The research suggests that the relative strength of the integrin beta1 pathway among individuals may explain why some cocaine users end up addicted to the drug while others escape its worst effects, Koleske theorized.

"If you were to become totally desensitized to cocaine, there is no reason to seek the drug," he said.

Koleske and Jane R. Taylor, professor of psychiatry and psychology and an author of the Feb. 14 paper, are teaming up with other Yale researchers to look for other genes that may play a role in protecting the brain from effects of cocaine and other drugs of abuse.

Shannon Gourley, now of Emory University who worked with Koleske and Taylor, is lead author on the Feb. 14 paper detailing how the structural response to cocaine protects against cocaine sensitivity. Anastasia Oleveska and Michael S. Warren are other Yale authors on this paper. Warren and William D. Bradley of Yale are co-lead authors of the latest Neuroscience paper describing the role for integrin beta 1 in the control of adolescent synapse and dendrite refinement and stability. Yu-Chih Lin, Mark A. Simpson, Charles A. Greer are other Yale-affiliated authors.

Related Stories

Abnormal brain structure linked to chronic cocaine abuse

Jun 21, 2011

Researchers at the University of Cambridge have identified abnormal brain structures in the frontal lobe of cocaine users' brains which are linked to their compulsive cocaine-using behaviour. Their findings were published ...

Tuning cocaine addiction

Jul 19, 2010

small bits of genetic material that influence gene expression - reduces the urge for a cocaine fix in mice, according to a paper published online on July 19 in the Journal of Experimental Medicine.

Recommended for you

Emotional adjustment following traumatic brain injury

Oct 24, 2014

Life after a traumatic brain injury resulting from a car accident, a bad fall or a neurodegenerative disease changes a person forever. But the injury doesn't solely affect the survivor – the lives of their spouse or partner ...

New ALS associated gene identified using innovative strategy

Oct 22, 2014

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

User comments