Dyslexia-linked genetic variant decreases midline crossing of auditory pathways

February 1, 2012
Finnish scientists have found that a rare dyslexia-linked genetic variant of the ROBO1 gene decreases normal crossing of auditory pathways in the human brain. The weaker the expression of the gene is, the more abnormal is the midline crossing. The results link, for the first time, a dyslexia-susceptibility gene to a specific sensory function of the human brain. Credit: Satu Lamminmaki

Finnish scientists have found that a rare dyslexia-linked genetic variant of the ROBO1 gene decreases normal crossing of auditory pathways in the human brain. The weaker the expression of the gene is, the more abnormal is the midline crossing. The results link, for the first time, a dyslexia-susceptibility gene to a specific sensory function of the human brain. This collaborative study between Aalto University and University of Helsinki in Finland and the Karolinska Insitutet in Sweden was published in the Journal of Neuroscience.

According to previous animal studies, dysfunction of the Robo1 gene prevents normal midline crossing of neurons during fetal development. Humans with totally dysfunctional ROBO1 gene have not been found. However, dyslexic individuals in a large Finnish family have inherited one poorly functioning copy of the ROBO1 gene. This association between ROBO1 and dyslexia was found already in 2005.

In the present study, the scientists quantified the functional crossing of auditory pathways in ten members of this family, applying a sensitive method based on the recording of weak magnetic fields of the brain (magnetoencephalo¬graphy, MEG). The functional crossing of auditory pathways was significantly weakened in individuals who carried the dyslexia-linked version of the ROBO1 gene.

Dyslexia is the most common learning disability, affecting roughly 10 per cent of the population in most countries.

Explore further: Unexpected function of dyslexia gene

Related Stories

Unexpected function of dyslexia gene

June 20, 2011

(Medical Xpress) -- Scientists at Karolinska Institutet have discovered that a gene linked to dyslexia has a surprising biological function: it controls cilia, the antenna-like projections that cells use to communicate.

Recommended for you

New mechanism discovered behind infant epilepsy

September 3, 2015

Scientists at Karolinska Institutet and Karolinska University Hospital in Sweden have discovered a new explanation for severe early infant epilepsy. Mutations in the gene encoding the protein KCC2 can cause the disease, hereby ...

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.