New evidence touch-sensing nerve cells may fuel 'ringing in the ears'

U-M researcher Susan Shore and graduate student Seth Koehler discuss hearing data. Credit: University of Michigan Health System

We all know that it can take a little while for our hearing to bounce back after listening to our iPods too loud or attending a raucous concert. But new research at the University of Michigan Health System suggests over-exposure to noise can actually cause more lasting changes to our auditory circuitry – changes that may lead to tinnitus, commonly known as ringing in the ears.

U-M researchers previously demonstrated that after damage, touch-sensing "somatosensory" nerves in the face and neck can become overactive, seeming to overcompensate for the loss of auditory input in a way the brain interprets – or "hears" – as noise that isn't really there.

The new study, which appears in the Feb. 1 issue of The Journal of Neuroscience, found that somatosensory neurons maintain a high level of activity following exposure to loud noise, even after hearing itself returns to normal.

The findings were made in guinea pigs, but mark an important step toward potential relief for people plagued by tinnitus, says lead investigator Susan E. Shore, Ph.D., of U-M's Kresge Hearing Research Institute and a professor of otolaryngology and molecular and integrative physiology at the U-M Medical School.

"The animals that developed tinnitus after a temporary loss in their hearing after loud noise exposure were the ones who had sustained increases in activity in these neural pathways," Shore says. "In the future it may be possible to treat tinnitus patients by dampening the hyperactivity by reprogramming these auditory-touch circuits in the brain."

In normal hearing, a part of the brain called the dorsal cochlear nucleus is the first stop for signals arriving from the ear via the auditory nerve. But it's also a hub where "multitasking" neurons process other sensory signals, such as touch, together with hearing information.

During hearing loss, the other sensory signals entering the dorsal cochlear nucleus are amplified, Shore's earlier research found. This overcompensation by the somatosensory neurons, which carry information about touch, vibration, skin temperature and pain, is believed to fuel tinnitus in many cases.

Tinnitus affects up to 50 million people in the United States and millions more worldwide, according to the American Tinnitus Association. It can range from intermittent and mildly annoying to chronic, severe and debilitating. There is no cure.

It especially affects baby boomers, who, as they reach an age at which hearing tends to diminish, increasingly find that tinnitus moves in. The condition most commonly occurs with hearing loss, but can also follow head and neck trauma, such as after an auto accident, or dental work. Tinnitus is the number one disability afflicting members of the armed forces.

The involvement of touch sensing (or "somatosensory") nerves in the head and neck explains why many tinnitus sufferers can change the volume and pitch of the sound by clenching their jaw, or moving their head and neck, Shore explains.

While the new study builds on previous discoveries by Shore and her team, many aspects are new.

"This is the first research to show that, in the animals that developed tinnitus after hearing returned to normal, increased excitation from the somatosensory nerves in the head and neck continued. This dovetails with our previous research, which suggests this somatosensory excitation is a major component of tinnitus," says Shore, who serves on the scientific advisory committee of the American Tinnitus Association.

"The better we understand the underlying causes of , the better we'll be able to develop new treatments," she adds.

More information: "Noise over-exposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus – possible basis for tinnitus-related hyperactivity?" Journal of Neuroscience, Feb. 1, 2012.

Related Stories

Silence may lead to phantom noises misinterpreted as tinnitus

Jan 01, 2008

Phantom noises, that mimic ringing in the ears associated with tinnitus, can be experienced by people with normal hearing in quiet situations, according to new research published in the January 2008 edition of Otolaryngology ...

Recommended for you

Continuing the quest for better stroke therapies

10 hours ago

Helping people recover from the debilitating effects of a stroke is an immensely complex challenge that requires deep knowledge of neurophysiology as well as effective therapy. Advancing such knowledge to improve therapeutic ...

At last, hope for ALS patients?

13 hours ago

U of T researchers have found a missing link that helps to explain how ALS, one of the world's most feared diseases, paralyses and ultimately kills its victims. The breakthrough is helping them trace a path to a treatment ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

kochevnik
4.5 / 5 (2) Feb 01, 2012
Tinnitus is also brought on in some people with high-glycemic foods, especially sugars and starches.
Telekinetic
not rated yet Feb 02, 2012
I notice that the "fullness" in my left ear also increases with caffeine consumption. It's a symptom of sudden sensorineural hearing loss. People can protect themselves from high decibel hearing damage with magnesium supplements, particularly Magnesium L- Threonate, which crosses the blood-brain barrier. It's really the only effective form of magnesium.