Eye movement not engaged in arms race, researchers find

We make our eye movements earlier or later in order to coordinate with movements of our arms, New York University neuroscientists have found. Their study, which appears in the journal Neuron, points to a mechanism in the brain that allows for this coordination and may have implications for rehabilitation and prosthetics.

Researchers have sought to understand the neurological processes behind eye and arm movements. For example, when you reach for an object, what goes on in our brains so that our eyes and arms are in ? Such coordination is central to the way different systems of the brain communicate with each other, and these undertakings are surprisingly complicated—due to differences in weight, for instance, the arm takes longer than the eye to move.

The question is vital to rehabilitation—a better understanding of these neurological processes may help address the needs of those who have suffered brain injuries and struggle to coordinate movements among different parts of the body. In addition, new insights in this area could lead to more advanced neural , which are artificial extensions to the body that restore or supplement function of the nervous system lost during disease or injury. Currently, these devices are somewhat primitive given our relatively limited knowledge of how the brain works to coordinate movement.

In their study, the NYU researchers examined the neurological activity of macaque monkeys while the subjects performed a variety of tasks that required them to either reach and to simultaneously employ rapid or to only use rapid eye movements, also known as saccades.

The resulting readings revealed significant coherent patterns of firing of in the brain's posterior parietal cortex (PPC) when both the eyes and arms were required to move for the same task, but not for tasks that involved only saccades. The patterns of firing were found in regions of the PPC that are specialized for moving either the eye or the arm.

Coherent patterns of firing may be due to these different brain areas communicating when coordinating movement, the research team concluded.

"We think we have a mechanism for coordination," explained Bijan Pesaran, a professor in NYU's Center for Neuroscience and the study's senior author, adding that the finding is only a step and additional study is likely to reveal a more complex process. "Our findings show it is the patterns of activity in a specific region of the brain just prior to both saccades and reaching that are important."

In addition, their data showed a of movement between the eyes and arms.

"The adjusts timing of eye movements, depending on how long it takes to start moving the arm," Pesaran explained. "Our study is asking how information flows between the arm and eye movement systems, and it shows how coherent patterns of neural activity are important to this communication."

Related Stories

Tiny eye motions help us find where Waldo is

date Feb 20, 2009

(PhysOrg.com) -- To recognize faces in a crowd, the brain employs tiny eye movements called saccades and microsaccades to help us search for objects of interest. While researchers know that these movements ...

Recommended for you

Team makes breakthrough in understanding Canavan disease

date 11 hours ago

UC Davis investigators have settled a long-standing controversy surrounding the molecular basis of an inherited disorder that historically affected Ashkenazi Jews from Eastern Europe but now also arises in other populations ...

Finding the body clock's molecular reset button

date 15 hours ago

An international team of scientists has discovered what amounts to a molecular reset button for our internal body clock. Their findings reveal a potential target to treat a range of disorders, from sleep ...

A 'GPS' to navigate the brain's neuronal networks

date 15 hours ago

In new research published today by Nature Methods, scientists from the Hebrew University of Jerusalem and Harvard University have announced a "Neuronal Positioning System" (NPS) that maps the circuitry of the ...

Neurons constantly rewrite their DNA

date 16 hours ago

Johns Hopkins scientists have discovered that neurons are risk takers: They use minor "DNA surgeries" to toggle their activity levels all day, every day. Since these activity levels are important in learning, ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.