Griffith's 3-D microscopy a research breakthrough

By Louise Durack
The understanding of diseases such as Parkinson's and Alzheimer's is set to take a step forward following groundbreaking technology which will enable cell analysis using automated 3D microscopy. An initiative between the Griffith's School of Information Communication Technology and the Eskitis Institute for Cellular and Molecular Biology, the technology will allow the automated identification, separation and analysis of cells as complex as nerve cells in the brain. Photo shows PhD candidate Gervase Tuxworth who is involved with the technology. Credit: Griffith University (Chris Stacey)

The understanding of diseases such as Parkinson's and Alzheimer's is set to take a step forward following groundbreaking technology at which will enable cell analysis using automated 3D microscopy.

An initiative between the Griffith's School of Information Communication Technology and the Eskitis Institute for Cellular and Molecular Biology, the technology will allow the automated identification, separation and analysis of cells as complex as in the brain.

"Scientists and clinicians will be able to superimpose multiple data sets in using automated techniques and then conduct detailed analysis of the data in a far improved way from the two dimensional microscopy that is currently available," said Dr Adrian Meedeniya, manager of Griffith's Imaging and Image Analysis Facility.

Microscopy and technology has undergone a recent revolution, with modern microscopes generating huge multi-dimensional data sets that can easily fill an entire hard drive. Manually analysing these data-sets is incredibly time consuming and prone to and bias.

"One of the main motivations for establishing this collaboration with the School of ICT was to create the technology to efficiently deal with these huge data sets," Dr Meedeniya said.

"We will be able to use this technology to rapidly increase our understanding of the way neuro-degenerative disorders affect nerve cell function in the brain."

Underpinned by neural network algorithms (), the cutting-edge technology is expected to be widely used in disease research within a matter of a few years.

Provided by Griffith University

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Mapping the brain

Aug 26, 2011

The brain of a mouse measures only 1 cubic centimeter in volume. But when neuroscientists at Harvard’s Center for Brain Science slice it thinly and take high-resolution micrographs of each slice, that ...

3-D tracking of single molecules inside cells

Mar 08, 2011

Researchers at the University of Texas Southwestern Medical Center and the University of Texas at Dallas are reporting today at the 55th Annual Biophysical Society Annual Meeting in Baltimore, MD how they are using a novel ...

Helium raises resolution of whole cell imaging

Oct 03, 2011

The ability to obtain an accurate three-dimensional image of an intact cell is critical for unraveling the mysteries of cellular structure and function. However, for many years, tiny structures buried deep inside cells have ...

Recommended for you

A new way to diagnose malaria, using magnetic fields

19 hours ago

Over the past several decades, malaria diagnosis has changed very little. After taking a blood sample from a patient, a technician smears the blood across a glass slide, stains it with a special dye, and ...

How Alzheimer's peptides shut down cellular powerhouses

Aug 29, 2014

The failing in the work of nerve cells: An international team of researchers led by Prof. Dr. Chris Meisinger from the Institute of Biochemistry and Molecular Biology of the University of Freiburg has discovered ...

User comments