Griffith's 3-D microscopy a research breakthrough

February 17, 2012 By Louise Durack
The understanding of diseases such as Parkinson's and Alzheimer's is set to take a step forward following groundbreaking technology which will enable cell analysis using automated 3D microscopy. An initiative between the Griffith's School of Information Communication Technology and the Eskitis Institute for Cellular and Molecular Biology, the technology will allow the automated identification, separation and analysis of cells as complex as nerve cells in the brain. Photo shows PhD candidate Gervase Tuxworth who is involved with the technology. Credit: Griffith University (Chris Stacey)

The understanding of diseases such as Parkinson's and Alzheimer's is set to take a step forward following groundbreaking technology at which will enable cell analysis using automated 3D microscopy.

An initiative between the Griffith's School of Information Communication Technology and the Eskitis Institute for Cellular and Molecular Biology, the technology will allow the automated identification, separation and analysis of cells as complex as in the brain.

"Scientists and clinicians will be able to superimpose multiple data sets in using automated techniques and then conduct detailed analysis of the data in a far improved way from the two dimensional microscopy that is currently available," said Dr Adrian Meedeniya, manager of Griffith's Imaging and Image Analysis Facility.

Microscopy and technology has undergone a recent revolution, with modern microscopes generating huge multi-dimensional data sets that can easily fill an entire hard drive. Manually analysing these data-sets is incredibly time consuming and prone to and bias.

"One of the main motivations for establishing this collaboration with the School of ICT was to create the technology to efficiently deal with these huge data sets," Dr Meedeniya said.

"We will be able to use this technology to rapidly increase our understanding of the way neuro-degenerative disorders affect nerve cell function in the brain."

Underpinned by neural network algorithms (), the cutting-edge technology is expected to be widely used in disease research within a matter of a few years.

Explore further: Mapping the brain

Related Stories

Mapping the brain

August 26, 2011

The brain of a mouse measures only 1 cubic centimeter in volume. But when neuroscientists at Harvard’s Center for Brain Science slice it thinly and take high-resolution micrographs of each slice, that tiny brain turns ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.