Researcher invents 'lab on a chip' device to study malaria

February 28, 2012

University of British Columbia researcher Hongshen Ma has developed a simple and accurate device to study malaria, a disease that currently affects 500 million people per year worldwide and claims a million lives.

Spread by , malaria is caused by a tiny parasite that infects . Ma and his team designed a "lab on a chip" device to better understand the changes in red blood cells caused by , the most common species of malaria parasites.

Ma explains the device will help those conducting laboratory research or evaluate the efficacy of different compounds in treating malaria – a disease that is increasingly resistant to drugs.

"Our results show that it's possible to precisely measure the stiffening of red blood cells caused by the parasite at various stages of infection," says Ma, assistant professor in the UBC departments of mechanical engineering and urologic sciences, and senior research scientist at the Vancouver Prostate Center.

Normal human red blood cells must squeeze through capillaries many times smaller than their own diameter in order to deliver oxygen to all tissues in the body. Red blood cells infected with malaria gradually lose this capability, which disrupts blood flow, causing failure of vital organs and eventually death.

Measuring 2" x 1" (50 cm x 25 cm), Ma's microfluidic device deforms single through a series of funnel-shaped constrictions. The pressure required to push the cell through each constriction is measured and then used to calculate the cell's deformability.

By measuring the deformability of an infected red blood cell, researchers can obtain vital information about the status of the disease and response to treatment, explains Ma, whose findings appear in the current issue of the journal Lab on a Chip.

Ma notes that although there has been considerable research on the biomechanics of malaria, "current methods to measure red cell deformability are either too complex to be used in clinical settings or are not sensitive enough."

Explore further: Discovery of key malaria proteins could mean sticky end for parasite

Related Stories

Measuring and modeling blood flow in malaria

November 23, 2009

When people have malaria, they are infected with Plasmodium parasites, which enter the body from the saliva of a mosquito, infect cells in the liver, and then spread to red blood cells. Inside the blood cells, the parasites ...

Blood-thinning copycat enters malaria fight

June 1, 2010

New treatments for malaria are possible after Walter and Eliza Hall Institute scientists found that molecules similar to the blood-thinning drug heparin can stop malaria from infecting red blood cells.

Malaria-infected cells stiffen, block blood flow

December 20, 2010

Although the incidence of malaria has declined in all but a few countries worldwide, according to a World Health Organization report earlier this month, malaria remains a global threat. Nearly 800,000 people succumbed to ...

Sickle cell anemia as malaria defense

November 30, 2011

Sickle cell anemia causes pain, fatigue and delayed growth, all because of a lack of enough healthy red blood cells. And yet genetic mutations that cause it - recessive genes for the oxygen-carrying hemoglobin protein - have ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.