Mechanism of calming hyperactivity by psychostimulant drugs identified

It has long been known that psychostimulant drugs have the paradoxical effect of reducing hyperactivity. [Psychostimulant drugs include methylphenidate – known by the trade names Ritalin, Concerta, and Methylin – and methamphetamine]. Since the mid-1950s, millions of children and adults have been prescribed stimulant medications to control attention deficit hyperactivity disorder (ADHD). But for more than seven decades, since the first experiment that gave an amphetamine drug to children diagnosed with behavioral problems, scientists have not known how stimulants work to control hyperactivity.

Now, a researcher at SUNY Downstate Medical Center, working with colleagues in Mexico, has identified the probable mechanism by which certain stimulants accomplish this paradoxical reduction of motor activity. David Erlij, MD, PhD, professor of physiology and pharmacology at SUNY Downstate, and fellow researchers have identified a network of nerve terminals where stimulation of D4 receptors depresses motor activity. "This network is localized deep in the brain, in the basal ganglia and the thalamus," says Dr. Erlij, "and its responses explain the reduction in motor activity caused by psychostimulants."

The findings were published in a recent edition of the journal, Neuropharmacology, and were conducted in an animal model. Dr. Erlij notes, "When, in 1937, Dr. Charles Bradley administered Benzedrine to a group of children with and learning disorders and discovered that 'fourteen children responded in a spectacular fashion,' a new era of psychopharmacology was inaugurated. Bradley showed, for the first time, that taking a pill could successfully treat a behavioral abnormality. Eventually, this discovery led to the widespread use of psychostimulant drugs in the treatment of ADHD."

"Despite their well established beneficial effects, it was not understood why psychostimulant drugs, which normally amplify the stimulatory responses of dopamine signals, reduce hyperactivity," says Dr. Erlij. "Our results suggest that enhancing dopamine D4 transmission in the basal ganglia and the thalamus is likely part of the mechanism of the therapeutic effects of psychostimulants on ADHD."

Dr. Erlij adds that the therapeutic action of psychostimulants in ADHD suggests that this condition is caused by abnormalities of dopamine signaling in the brain, and that, in ADHD patients, the dopamine D4 receptor gene is abnormal. He concludes, "Now that we know with some precision where calming of hyperactivity is likely taking place in the brain, it may be possible to develop new and better treatment modalities."

Provided by SUNY Downstate Medical Center

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Scientists show how gene variant linked to ADHD could operate

Aug 16, 2011

A study using mice provides insight into how a specific receptor subtype in the brain could play a role in increasing a person's risk for attention-deficit hyperactivity disorder (ADHD). The research, conducted by the Intramural ...

Adult ADHD linked with dopamine levels

Aug 09, 2007

Adults with attention-deficit/hyperactivity disorder have a reduced response to the drug Ritalin, U.S. government scientists have found.

Recommended for you

Cyber buddy is better than 'no buddy'

6 hours ago

A Michigan State University researcher is looking to give exercise enthusiasts the extra nudge they need during a workout, and her latest research shows that a cyber buddy can help.

Offenders turn to mental health services 

11 hours ago

Adult criminal offenders in Western Australian are eight times more likely than non-offenders to use community-based mental health services in the year before their first sentence, a UWA study has found.

Deliberation is staunchest ally of selfishness

12 hours ago

(Medical Xpress)—Over the last two years, Yale psychologist David Rand and colleagues have investigated what makes people willing to help each other. Their latest research shows that while initial reactions ...

User comments