How mitochondrial DNA defects cause inherited deafness

February 17, 2012 By Helen Dodson
How mitochondrial DNA defect causes inherited hearing loss.

(Medical Xpress) -- Yale scientists have discovered the molecular pathway by which maternally inherited deafness appears to occur: Mitochondrial DNA mutations trigger a signaling cascade, resulting in programmed cell death. The study is in the Feb. 17 issue of Cell.

Mitochondria are that function as "cellular " because they generate most of the cell's supply of energy. They contain DNA inherited from one’s mother. Mitochondria determine whether a cell lives or dies via the process of programmed , or apoptosis.

The Yale scientists focused on a specific mitochondrial DNA mutation that causes maternally inherited deafness. The mutation occurs in a gene that codes for RNA in mitochondrial ribosomes, which generate proteins required for cellular respiration. The team found that cell lines containing this mutation are prone to cell death not directly due to the mutation, but rather because it enhanced a normal chemical modification of the RNA called methylation, which regulates ribosome assembly.

“Our lab had previously discovered that overexpression of the enzyme responsible for this methylation could cause cell death, even in cells without the deafness mutation,” said corresponding author Gerald S. Shadel, professor of pathology and genetics at Yale School of Medicine. "But when the researchers overexpressed the enzyme in mice to mimic the effects of the mutation,” he said, “we were astonished to discover that the animals progressively lost their hearing, reflecting how such disease would develop due to a known pathogenic human mitochondrial DNA mutation. This new mouse model will be instrumental in understanding genetic and environmental factors known to impact mitochondrial disease pathology.”

The researchers found that reactive oxygen molecules produced by diseased mitochondria are what trigger events leading to a cell death-inducing gene expression program. By genetically depleting the protein ultimately responsible for activating this programmed cell death response, they were able to restore normal hearing to the mice.

The study not only sheds light on inherited deafness in humans, but possibly also age-related hearing loss and other human diseases. First author Nuno Raimundo, a postdoctoral associate in pathology, said, “ diseases are complicated because different tissues are affected in often unpredictable ways. Defining the molecular mechanism underlying death of only a specific subset of cells in the inner ear is a major step toward unraveling this complexity.”

Related Stories

New mitochondrial control mechanism discovered

May 4, 2011

Scientists have discovered a new component of mitochondria that plays a key part in their function. The discovery, which is presented in the journal Cell Metabolism, is of potential significance to our understanding of both ...

Diabetic kidney failure follows a 'ROCK'y road

February 7, 2012

A protein kinase known as ROCK1 can exacerbate an important process called fission in the mitochondria, the power plants of cells, leading to diabetic kidney disease, said researchers from Baylor College of Medicine in a ...

Recommended for you

Crystal clear images uncover secrets of hormone receptors

July 31, 2015

Many hormones and neurotransmitters work by binding to receptors on a cell's exterior surface. This activates receptors causing them to twist, turn and spark chemical reactions inside cells. NIH scientists used atomic level ...

A cheaper, high-performance prosthetic knee

July 30, 2015

In the last two decades, prosthetic limb technology has grown by leaps and bounds. Today, the most advanced prostheses incorporate microprocessors that work with onboard gyroscopes, accelerometers, and hydraulics to enable ...

Flow means 'go' for proper lymph system development

July 27, 2015

The lymphatic system provides a slow flow of fluid from our organs and tissues into the bloodstream. It returns fluid and proteins that leak from blood vessels, provides passage for immune and inflammatory cells from the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.