Molecular duo dictate weight and energy levels

February 28, 2012
Three MCH neurons in the hypothalamus region of a mouse brain are highlighted in green. In animals, these neurons are associated with high calorie intake and lower energy levels. Yale researchers have shown how the effects of these key cells are reversed. Credit: Courtesy Yale University

Yale University researchers have discovered a key cellular mechanism that may help the brain control how much we eat, what we weigh, and how much energy we have.

The findings, published in the Feb. 28 issue of the Journal of Neuroscience, describe the regulation of a family of cells that project throughout the nervous system and originate in an area of the brain call the hypothalamus, which has been long known to control energy balances.

Scientists and pharmaceutical companies are closely investigating the role of melanin-concentrating hormone (MCH) neurons in controlling food intake and energy. Previous studies have shown that MCH makes eat more, sleep more, and have less energy. In contrast, other use the thyrotropin-releasing hormone (TRH) as a neurotransmitter, and these neurons reduce food intake and body weight, and increase physical activity.

The Yale study of brains of mice shows that the two systems appear to act in direct opposition, to help the organism keep these crucial functions in balance.

Although TRH is normally an , the Yale study shows that in mice TRH inhibits MCH cells by increasing inhibitory synaptic input. In contrast, TRH had little effect on other types of neurons also involved in .

"That these two types of neurons interact at the synaptic level gives us clues as to how the brain controls the amount of food we eat, and how much we sleep," said Anthony van den Pol, senior author and professor of neurosurgery at Yale School of Medicine.

Explore further: Modulation of inhibitory output is key function of antiobesity hormone

Related Stories

Recommended for you

Oligodendrocytes induce motor neuron death in ALS

September 27, 2016

A first-of-its-kind oligodendrocyte in vitro model shows that human cells normally supportive of motor neuron function play an active role in amyotrophic lateral sclerosis pathogenesis – and this discovery may point the ...

The language of senses

September 26, 2016

Sight, touch and hearing are our windows to the world: these sensory channels send a constant flow of information to the brain, which acts to sort out and integrate these signals, allowing us to perceive the world and interact ...

Scientists track down possible new treatment for epilepsy

September 26, 2016

Increasing the concentration of specific fats in the brain could suppress epileptic seizures. This is evident from ground-breaking research carried out by the research groups of Professor Patrik Verstreken (VIB-KU Leuven) ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.