Researchers identify novel pathway responsible for infection of a common STD pathogen

Researchers from Boston University School of Medicine (BUSM) have for the first time identified a novel pathway that is necessary for infection to occur with the pathogen Neisseria gonorrhoeae, which is responsible for the second most common infectious disease worldwide, gonorrhea. The study, which was recently published online in the Journal of Bacteriology, may lead to new treatment methods for this sexually transmitted disease.

N. gonorrhoeae is a that readily develops resistance to antibiotics such as sulfanilamides, penicillins, tetracyclines and fluoroquinolones. It has recently been reported that N. gonorrhoeae is becoming resistant to cephalosporins, which are the only treatment option recommended by the (CDC). Today, new therapeutic methods other than antibiotics are in great need to treat these infections.

According to the BUSM researchers, understanding the process of how N. gonorrhoeae causes disease in both men and women is essential for the design of new targets to block the infection. "The first step in the disease gonorrhea is the colonization of bacteria on human mucosal surfaces, such as the vaginal and penile mucosa," explained senior author Caroline Genco, PhD, professor of medicine and microbiology and director of research in at BUSM.

In this study, Genco and her colleagues identified a novel pathway that is critical for colonization of this bacterium on host mucosal surface. The key of this pathway is a single protein, designated as Fur, the ferric uptake , which controls the expression of hundreds of N. gonorrhoeae genes by either increasing or decreasing the expression of these genes.

The study found that genes whose expression is increased by Fur may play a critical role in the prevention of disease development by triggering the host immune system to recognize and clear the bacterium.

"These pivotal studies provide new candidates that can be targeted for therapeutic intervention in this common sexually transmitted disease," she added.

Related Stories

Antibiotic-resistant gonorrhea increases from 2 percent to 28 percent

Feb 02, 2009

The prevalence of quinolone-resistant gonorrhea has increased rapidly in Ontario - Canada's most populous province - from a rate of 2% in 2001 to 28% in 2006, found a study published in CMAJ http://www.cmaj.ca/press/pg287.pdf. Infections in heterosexual men appear to have contribut ...

Gonorrhea acquires a piece of human DNA

Feb 14, 2011

If a human cell and a bacterial cell met at a speed-dating event, they would never be expected to exchange phone numbers, much less genetic material. In more scientific terms, a direct transfer of DNA has never been recorded ...

Recommended for you

Evidence-based recs issued for systemic care in psoriasis

10 hours ago

(HealthDay)—For appropriately selected patients with psoriasis, combining biologics with other systemic treatments, including phototherapy, oral medications, or other biologic, may result in greater efficacy ...

Bacteria in caramel apples kills at least four in US

10 hours ago

A listeria outbreak believed to originate from commercially packaged caramel apples has killed at least four people in the United States and sickened 28 people since November, officials said Friday.

Steroid-based treatment may answer needs of pediatric EoE patients

11 hours ago

A new formulation of oral budesonide suspension, a steroid-based treatment, is safe and effective in treating pediatric patients with eosinophilic esophagitis (EoE), according to a new study in Clinical Gastroenterology and Hepatology, the official clinical practice journal ...

Discovery of genes that predispose a severe form of COPD

13 hours ago

A study by Ramcés Falfán-Valencia, researcher at the National Institute of Respiratory Diseases (INER), found that the mestizo Mexican population has a number of variations in certain genes that predispose ...

On the environmental trail of food pathogens

14 hours ago

Tracking one of the deadliest food contamination organisms through produce farms and natural environments alike, Cornell microbiologists are showing how to use big datasets to predict where the next outbreak could start.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.