Protein identified that can lengthen our life?

Cells use various methods to break down and recycle worn-out components—autophagy is one of them. In the dissertation she will be defending at Umea University in Sweden, Karin Håberg shows that the protein SNX18 is necessary for cells to be able to perform autophagy.

In animal experiments on both simple organisms like fruit flies and in more complex animals like mice, researchers have seen that stimulating leads to increased longevity. It is still unclear whether these results are directly translatable to humans. However, there are theories that calorie restriction, which is a relatively well-established way of increasing longevity, induces higher levels of autophagy, which would help delay aging.

Cells metabolize their old proteins and cell organelles by breaking them down in a process called autophagy. The term comes from Greek and means roughly to eat oneself. Autophagy is important in cleaning out defective components that otherwise can damage cells and cause diseases.

Molecules that are to be broken down are enclosed in a membrane sack that forms an organelle called an autophagosome. This then merges with a lysosome, a cell organelle containing many different enzymes that are specialized in breaking down biomolecules. The metabolic products can then be recycled by the cells to form new molecules.

Karin Håberg’s studies show that SNX18 binds to and can reshape cell membranes. Her studies of the role played by SNX18 in autophagy showed that when the cells’ production of SNX18 was stopped by RNA interference, the number of autophagosomes declined drastically, thereby inhibiting the autophagy process.

When the cells were manipulated instead to overproduce SNX18, the number of autophagosomes increased. Karin Håberg was also able to demonstrate that it is precisely the capacity to re-model membranes that is the key to SNX18’s function in the formation of autophagosomes. The studies of autophagy were conducted in collaboration with a research team at Oslo University led by Dr. Anne Simonsen.

add to favorites email to friend print save as pdf

Related Stories

Cell recycling protects tumor cells from anti-cancer therapy

Mar 06, 2008

Cells have their own recycling system: Discarded cellular components, from individual proteins through to whole cellular organs, are degraded and the building blocks re-used in a different place. The scientific term for this ...

Aging gracefully requires taking out the trash

Dec 14, 2007

Suppressing a cellular cleanup-mechanism known as autophagy can accelerate the accumulation of protein aggregates that leads to neural degeneration. In an upcoming issue of Autophagy, scientists at the Sa ...

Recommended for you

Student seeks to improve pneumonia vaccines

Aug 20, 2014

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

Aug 20, 2014

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

User comments