Therapy targets leukemia stem cells

February 13, 2012

New research takes aim at stubborn cancer stem cells that are thought to be responsible for treatment resistance and relapse. The study, published by Cell Press in the February 14 issue of the journal Cancer Cell, provides insight into mechanisms associated with the survival of leukemia stem cells and identifies a potential therapeutic target that is specific for these dangerously persistent cells.

Chronic myelogenous leukemia (CML) is a cancer of the for which are currently the first line of therapy. These drugs prolong survival, but is often seen after drug treatment is stopped. "Tyrosine kinase inhibitors do not eliminate leukemia stem cells, which remain a potential source of ," explains senior coauthor Dr. Ravi Bhatia from the City of Hope National Medical Center in Duarte, California. "CML patients need to take tyrosine kinase inhibitor treatment indefinitely, which carries a significant risk of toxicity, lack of compliance, drug resistance, relapse, and associated expense."

Strategies targeting leukemia stem cells are necessary to achieve a cure. Previous work has implicated the enzyme sirtuin 1 (SIRT1) in protecting stem cells from stress and in playing a role in leukemia, as well as other types of cancer. In the current study, Dr. Bhatia, coauthor Dr. WenYong Chen, first author Ling Li, and their colleagues investigated whether SIRT1 was involved in the survival and growth of CML stem cells. The researchers discovered that SIRT1 was overexpressed in CML stem cells and that inhibition of SIRT1selectively reduced the survival and growth of CML stem cells. Importantly, SIRT1 inhibition was associated with activation of the .

Taken together, the results reveal a specific mechanism that supports the survival of leukemia stem cells. "Our findings are important because they show that SIRT1-mediated inactivation of p53 contributes to CML leukemia stem cell survival and resistance to treatment with tyrosine kinase inhibitors," concludes Dr. Chen. "We suggest that SIRT1 inhibition is an attractive approach to selectively target leukemia stem cells that resist elimination by current treatments."

Explore further: A potential new way to make a good anti-leukemia drug even better

Related Stories

A lethal cancer knocked down by one-two drug punch

June 7, 2009

In the battle against cancer, allies can come from unexpected sources. Research at The Jackson Laboratory has yielded a new approach to treating leukemia, one that targets leukemia-proliferating cells with drugs that are ...

Combination therapy targets stubborn leukemia stem cells

May 17, 2010

New research discovers a combination of drugs that may prove to be a more effective treatment for a lethal form of leukemia. The study, published by Cell Press in the May issue of the journal Cancer Cell, reports that the ...

New approach to leukemia chemotherapy -- is a cure in sight?

March 31, 2011

Speaking at the UK National Stem Cell Network conference in York later today (31 March), Professor Tessa Holyoake from the University of Glasgow will discuss a brand new approach to treating chronic myeloid leukaemia (CML) ...

Fish oil may hold key to leukemia cure

December 22, 2011

A compound produced from fish oil that appears to target leukemia stem cells could lead to a cure for the disease, according to Penn State researchers. The compound -- delta-12-protaglandin J3, or D12-PGJ3 -- targeted and ...

Recommended for you

Molecularly shutting down cancer cachexia

August 30, 2016

Healthy fat tissue is essential for extended survival in the event of tumor-induced wasting syndrome (cachexia). In Nature Medicine, researchers at Helmholtz Zentrum München show that selective manipulation of an enzyme ...

Radiologists detect breast cancer in 'blink of an eye'

August 29, 2016

A new study by investigators at Brigham and Women's Hospital in collaboration with researchers at the University of York and Leeds in the UK and MD Andersen Cancer Center in Texas puts to the test anecdotes about experienced ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.