A thought-provoking new therapeutic target for brain cancer?

February 1, 2012

Glioblastoma multiforme (GBM) is the most common of all malignant brain tumors that originate in the brain. Patients with GBM have a poor prognosis because it is a highly aggressive form of cancer that is commonly resistant to current therapies. New therapeutic approaches are therefore much needed. Joanna Phillips, Zena Werb, and colleagues, at the University of California, San Francisco, have now identified a potential new therapeutic target for the treatment of GBM.

A substantial proportion of GBMs show evidence of abnormal activation of signaling pathways triggered by a known as PDGFR-alpha, and this is thought to drive the tumor. PDGFR-alpha triggers activation of signaling pathways when it binds the growth factor PDGF. Phillips, Werb, and colleagues found that the protein SULF2, which is known to regulate the availability of growth factors such as PDGF, was expressed in primary human GBM tumors and cell lines.

Moreover, GBMs characterized by abnormal activation of signaling pathways downstream of PDGFR-alpha showed the strongest SULF2 expression. Importantly, knocking down expression of SULF2 in human GBM cell lines decreased the growth of these cells upon transplantation into mice. Phillips, Werb, and colleagues therefore suggest that SULF2 is a candidate for the treatment of GBM and that assessing its levels could identify tumors dependent on growth factors such as PDGF. The latter is important as PDGFR-alpha and other molecules to which growth factors bind are themselves good therapeutic targets.

More information: www.jci.org/articles/view/58215?key=7d9ee1ebe13cc1c6c025

Related Stories

Glioblastoma multiforme in the Dock

November 14, 2011

Glioblastoma multiforme (GBM) is the most common malignant brain cancer in humans. Patients with GBM have a poor prognosis because it is a highly aggressive form of cancer that is commonly resistant to current therapies. ...

How brain tumors invade

December 12, 2011

Scientists have pinpointed a protein that allows brains tumors to invade healthy brain tissue, according to work published this week in the Journal of Experimental Medicine.

Recommended for you

Strange circular DNA may offer new way to detect cancers

July 30, 2015

Strange rings of DNA that exist outside chromosomes are distinct to the cell types that mistakenly produced them, researchers have discovered. The finding raises the tantalizing possibility that the rings could be used as ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.