Researchers uncover new operations of cancer suppressor

(Medical Xpress) -- Scientists at the University of Dundee studying an important tumour suppressor, which is involved in at least a quarter of all cancers, have uncovered new ways in which it works.

The research team at the College of Life Sciences at Dundee have been studying the protein , which when 'turned off' or damaged drives the development of many cancers.

By studying cells, the Dundee team led by Dr Nick Leslie found that some damaged PTEN proteins can still operate in many of their normal ways but importantly lose the ability to stop cancer cells invading the .

Brain tumours are particularly deadly, having a very , because although they rarely spread outside the brain, by the time they are diagnosed, some cancer cells have usually moved away from the original tumour and infiltrated the surrounding brain tissue. Therefore, when a surgeon removes the initial tumour, it is often not long before a second tumour grows from the few cancer cells in the surrounding .

Dr Leslie's team set up experiments, using a 3D matrix similar to that found between cells in the brain, to investigate this process of how invade from a tumour mass into healthy tissue. Their work, published in the journal Science Signalling, describes how PTEN controls the way these brain tumour cells grow, change their shape, switch particular on and off and importantly how PTEN normally stops this invasion process.

"We know that PTEN has lots of effects on what cells do, but it has proved harder to be certain which of these effects are important in stopping cancer and therefore which ones we should develop drugs to target," said Dr Leslie.

"It is really important we understand the factors driving these cancers, which affect thousands of people every year in the UK."

Dr Leslie said a lot was already known about one way in which PTEN can stop cells growing and dividing, but there have been several hints in the past that there are other undiscovered ways in which PTEN may stop cancers developing.

"In our new work, we've used two similarly damaged versions of PTEN, one of which was found in a tumour, that we show can still do the best recognised things that PTEN does, just as well as normal PTEN . However, these damaged proteins have completely lost the ability to stop brain tumours cells invading through a 3D matrix. This implies that in some, and perhaps many, tumours it is not the best known things that PTEN does that explain why it gets damaged, but instead it must be these new ways that PTEN can work that we know much less about."

The work also identified a 'gene signature' (showing which genes are turned on and off in particular cells) that is controlled by PTEN, which links to its control of invasion, but not its best recognised ways of working.

"Interestingly this gene signature also seemed to be recognisable in almost all of a large set of human brain tumour samples that lack or have damaged PTEN, providing more evidence that this new way in which PTEN works may be important in brain tumour development," said Dr Leslie.

"The key goals of future work in this area need to include understanding much more about these new ways in which PTEN can work and whether they show us new ways to develop drugs to treat brain and other tumours."

The work of Dr Leslie and the Dundee team has been supported by funding from the Medical Research Council and the Association for International Cancer Research.

Provided by University of Dundee

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Anti-cancer effects of broccoli ingredient explained

Jul 13, 2010

Light has been cast on the interaction between broccoli consumption and reduced prostate cancer risk. Researchers writing in BioMed Central's open access journal Molecular Cancer have found that sulforaphane, a chemical found ...

Targeting PTEN may prevent skin cancer

Jul 26, 2011

Scientists believe they have identified a role for PTEN, a known tumor suppressor, in removing DNA damage derived from UVB radiation, a known risk factor for non-melanoma skin cancer, according to a study published in Cancer Re ...

Recommended for you

Funding to investigate an alternative to chemotherapy

27 minutes ago

Professor Simon Rule, Professor in Haematology at Plymouth University Peninsula Schools of Medicine and Dentistry and Consultant Haematologist at Plymouth Hospitals NHS Trust, has been awarded a significant grant by Cancer ...

Enzyme may be key to cancer progression in many tumors

30 minutes ago

Mutations in the KRAS gene have long been known to cause cancer, and about one third of solid tumors have KRAS mutations or mutations in the KRAS pathway. KRAS promotes cancer formation not only by driving ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.