Opening the brain to new treatments

March 13, 2012
A researchers uses an MRI machine to guide the focus ultrasound used to disrupt specific areas of the blood-brain barrier. Credit: © The Journal of Visualized Experiments

One of the trickiest parts of treating brain conditions is the blood brain barrier, a blockade of cells that prevent both harmful toxins and helpful pharmaceuticals from getting to the body's control center. But, a technique published in JoVE, uses an MRI machine to guide the use of microbubbles and focused ultrasound to help drugs enter the brain, which may open new treatment avenues for devastating conditions like Alzheimer's and brain cancers.

"It's getting close to the point where this could be done safely in humans," said paper-author Meaghan O'Reilly, "there is a push towards applications."

The current method of disrupting the blood-brain barrier (BBB) is by using osmotic agents such as mannitol, which suck the water out of the cells that form the barrier, causing the gaps between them to get bigger. Unfortunately, this method opens large areas of the barrier, leaving the brain exposed to toxins.

The benefit of the microbubble technique is that it can be used on a very small area of the BBB. The microbubbles, made of lipids (fats) and gas, are injected into the . When focused ultrasound is applied, the bubbles expand and contract. It is thought that the force of the movement in the bubbles causes the cells that form the BBB to temporarily separate, which allows drugs to reach the brain.

"Microbubble technology has been around for years, though its applications have mostly been as for diagnostic ultrasound," said JoVE Editorial Director, Dr. Beth Hovey. "This newer approach, using ultrasound to help the bubbles permeablize the blood brain barrier, will hopefully allow for better treatment of diseases within the brain."

In this method, O'Reilly and her colleagues use the to ensure that the barrier opens, and they can also time how long it takes for it to close, which will be important for when the technique is used on patients.

O'Reilly chose to publish the technique in JoVE, the Journal of Visualized Experiments, to help other scientists learn the method.

JoVE is the first and only peer-reviewed, PubMed-indexed science journal to publish all of its content in both text and video format.

"The ability of focused ultrasound combined with to disrupt the has been known for over a decade. However, because the actual technique can be challenging— there are critical steps involved— the video article fills a gap in the literature that is a major hindrance to people getting into the field," she said.

Explore further: Engineers use short ultrasound pulses to reach neurons through blood-brain barrier

More information: The article will be published on March 13 and can be viewed here: www.jove.com/video/3555/mri-guided-disruption-of-the-blood-brain-barrier-using-transcranial-focused-ultrasound-in-a-rat-model

Related Stories

Researchers visualize the development of Parkinson's cells

January 31, 2012

In the US alone, at least 500,000 people suffer from Parkinson's disease, a neurological disorder that affects a person's ability to control his or her movement. New technology from the University of Bonn in Germany lets ...

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.