Cartilage repair gel gives injuries a sporting chance

March 8, 2012

A cartilage gel being developed by tissue engineers and biochemists at the University of Sydney could bring increased mobility to people living with debilitating sports injuries.

The researchers have joined forces to fast track the development of a new that can be used to repair damaged cartilage, in particular .

Work has just commenced on an injectable hybrid-hydrogel that mimics chondrocytes, the cells that are found in cartilage.

Chief investigator on the project, Associate Professor Fariba Dehghani, from the Faculty of Engineering and Information Technologies, says the team is targeting these cells because they are responsible for producing and maintaining the structure of cartilage but until now have been extremely hard to repair when damaged.

"Tissue engineering is an emerging science that consists of growing living cells into 3D scaffolds to form whole tissues capable of normal functions," says Professor Dehghani.

"We intend to generate a new family of hybrid biomaterials constructed by precisely blending natural and synthetic components.

"The novel biomaterials that we are developing will establish a foundation for manufactured prefabrication and in situ injections which will promote rapid and targeted healing to the affected region," says Professor Dehghani.

Sports injuries similar to those affecting cricketers or rugby league and soccer players for example could potentially be permanently repaired by the techniques being developed by the team, says Professor Dehghani.

Also working on the project is molecular researcher and co-Chief investigator Professor Tony Weiss from the University's School of , who says:

"When we refine it, this technology has the potential to be used to rebuild other cartilage in many places in the human body, areas that are adversely affected by ageing and disease."

"This is an extremely exciting time for scientists. Our multidisciplinary approach to research gives us the opportunity to blend the best of our skills."

"It promises more rapid advancement of our knowledge and by working together we can accelerate the development of therapies for injuries which in the past many of us have just had to live with," says Professor Weiss.

Explore further: Scientists progress in successful tissue engineering

Related Stories

Scientists progress in successful tissue engineering

March 23, 2007

Tissue engineering is a relatively new field of basic and clinical science that is concerned, in part, with creating tissues that can augment or replace injured, defective, or diseased body parts.

Embryonic stem cells used to grow cartilage

September 6, 2007

Rice University biomedical engineers have developed a new technique for growing cartilage from human embryonic stem cells, a method that could be used to grow replacement cartilage for the surgical repair of knee, jaw, hip, ...

Amniotic membrane used to repair human articular cartilage

June 23, 2010

Spanish scientists have proposed using human amniotic membrane as a new tool for repairing damaged human articular cartilage, which heals very poorly because of its low capacity for self-repair. Their research, published ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.