Disabling cancer cells' defenses against radiation

The legendary Trojan horse was a way for the Greeks to bypass Troy's defenses. Researchers at Emory are testing a strategy where cancer cells are induced to shut down their DNA repair genes, making them defenseless against radiation.

Researchers at Winship Cancer Institute are developing a technique to remove cancer cells' defenses against radiation.

Radiation primarily kills cells by inducing DNA damage, so the aim of the technique is to sensitize cells to radiation by disabling their ability to repair DNA. The technique sneaks RNA molecules into cells that shut down genes needed for DNA repair.

The still-experimental method could potentially allow oncologists to enhance the tumor-killing effects of radiation, while using lower doses and reducing damage to healthy tissues.

In the laboratory, Wang's team uses modified lentiviruses to introduce the . The same types of viruses have been used in gene therapy research. Wang says her team is now testing whether a small peptide tag can direct RNA to instead.

The results are published in the March 1, 2012 issue of Cancer Research.

The senior author is Ya Wang, MD, PhD, professor of radiation oncology at Emory University School of Medicine and director of the Division of Experimental Radiation Oncology at Winship Cancer Institute. The first author is Zhiming Zheng, now at Shandong University in China. Winship faculty members Jeffrey Olson, MD, Chunhai Hao, MD, PhD and Walter Curran, MD contributed to the research.

Zheng and his colleagues focused on two genes, XRCC2 and XRCC4, which encode proteins needed for separate pathways of DNA repair. XRCC2 and XRCC4, in general, are both more active in than in healthy cells.

In the past, using "" techniques to silence a gene was via targeting the coding region only. Here, Wang's team used the RNAi technique to more efficiently knock down the gene via targeting both the coding region (making the RNA unstable) and non-coding region (blocking ), thus making and two to three times more sensitive to X-ray radiation.

"Inhibition of has been tried using drugs that inhibit ," Wang says. "This approach -- combining targeted genes and combining targeted regions of one gene -- made it possible to efficiently knock down either gene and achieve a greater sensitivity to radiation.”

RNAi is a technique that is widespread in the laboratory. It could be useful clinically as well because of the targeted ability to silence particular genes, but is still experimental for use in humans. Andrew Fire and Craig Mello received the 2006 Nobel Prize in Medicine for the discovery that short pieces of RNA, when introduced into cells, can silence a stretch of genetic code. Artificially introduced RNA hijacks machinery inside the cell that the cell naturally uses for regulation.

Wang adds that her team's tactic of combining two ways to knock a gene down may be useful in the laboratory, among a wide range of fields of biology. "It may be particularly suited to suppressing genes that are difficult to approach by simpler methods,” she says.

Wang's research is supported by the National Institutes of Health and the National Aeronautics and Space Administration.

More information: Z. Zheng, W.L. Ng, X. Zhang, J.J. Olson, C. Hao, W.J. Curran and Y. Wang. RNA-mediated targeting of noncoding and coding sequences in DNA repair gene messages efficiently radiosensitizes human tumor cells. Cancer Res 72, 1221-1228 (2012).

Related Stories

A question of gene silencing

Aug 24, 2011

When investigating cancer cells, researchers discovered numerous peculiarities: Particular RNA molecules are present in large numbers, particular genes are overactive. Do these characteristics have a relation to cancer? Do ...

RNAi shows promise in gene therapy, researcher says

Feb 19, 2007

Three years ago Mark Kay, MD, PhD, published the first results showing that a biological phenomenon called RNA interference could be an effective gene therapy technique. Since then he has used RNAi gene therapy to effectively ...

Cancer protein discovery may aid radiation therapy

Jun 09, 2011

Scientists at Dana-Farber Cancer Institute have uncovered a new role for a key cancer protein, a finding that could pave the way for more-effective radiation treatment of a variety of tumors.

Researchers discover key protein involved in DNA repair

Aug 23, 2010

In a groundbreaking study, University of Toronto researchers including Professors Daniel Durocher, Anne-Claude Gingras and Frank Sicheri have uncovered a protein called OTUB1 that blocks DNA damage in the cell -- a discovery ...

Recommended for you

Clearing cells to prevent cervical cancer

5 hours ago

A study published online in the International Journal of Cancer earlier this month describes a novel approach to preventing cervical cancer based on findings showing successful reduction in the risk of cervical cancer after ...

Is Europe putting cancer research at risk?

9 hours ago

The European Society for Medical Oncology (ESMO), the leading pan-European association representing medical oncology professionals, has expressed concern that the proposed EU General Data Protection Regulation could make ...

User comments