New H5N1 viruses: How to balance risk of escape with benefits of research?

In the controversy surrounding the newly developed strains of avian H5N1 flu viruses, scientists and policy makers are struggling with one question in particular: what level of biosafety is best for studying these potentially lethal strains of influenza? In a pair of commentaries, researchers from the Mount Sinai School of Medicine in New York and the University of Michigan argue their different views of how to safely handle H5N1 flu viruses. The commentaries will be published in mBio, the online open-access journal of the American Society for Microbiology, on Tuesday, March 6.

This fall, the U.S. National Science Advisory Board for Biosecurity (NSABB) set off a debate when it asked the authors of two recent H5N1 research studies and the that planned to publish them to withhold crucial details of the research in the interest of biosecurity. The researchers had taken H5N1, a virus that cannot easily transmit from human to human, and developed strains of the virus that can transmit easily between ferrets, which are a common model for .

These H5N1 strains and others like them that might be developed in the future could pose a grave threat to human life, but researchers and others argue that studying these H5N1 strains could help bolster preparedness efforts and to help fend off a potential H5N1 pandemic. How can we balance the need to protect human life from the accidental escape of an H5N1 strain with the need to continue research that might prevent a naturally occurring outbreak? Which biosafety level (BSL) is right for the ?

In the commentaries appearing in mBio, two experts offer opposing views of the appropriate level of security for dealing with H5N1 viruses. The authors agree that, with a reported case fatality rate that could be as high as 50% or more, H5N1 could create a of disastrous proportions, but they differ in their opinions of how to strike a balance between biosecurity and potentially life-saving research.

"The existence of mammalian transmissible H5N1 immediately poses the question of whether the current biosafety level of containment is adequate," writes mBio® Editor in Chief Arturo Casadevall in an accompanying editorial. "It is important to understand that the choice of BSL level has profound implications for society."

Under current U.S. guidelines H5N1 is classified as a select agent and must be worked with under BSL-3 with enhancements. The BSL-3 designation is given to pathogens that can be transmitted through the air and can cause serious or fatal disease but for which treatment exists. Most facilities in the United States with infectious disease research programs have BSL-3 laboratories. In addition, many hospitals have areas that can be operated at this level; these areas are used for isolating patients with highly contagious diseases. In contrast, BSL-4 is reserved for pathogens for which there is no known treatment and BSL-4 laboratory requirements are such that there are only four working BSL-4 laboratories in the United States.

Adolfo García-Sastre of the Mount Sinai School of Medicine argues that the H5N1 viruses in question may well be less pathogenic than they were before passage through , but they could still be quite dangerous, so preventing human exposure is crucial. However, he says, the ultimate level of biosecurity, BSL-4, is excessive in this case and would stifle the pace of discovery. There are both therapeutics and vaccines available for H5N1, says García-Sastre, so he advocates for conducting the research in enhanced BSL-3 facilities, which he says offer the necessary security measures, including interlocked rooms with negative pressure, HEPA-filtered air circulation, and appropriate decontamination and/or sterilization practices for material leaving the facility.

Michael Imperiale and Michael Hanna of the University of Michigan, on the other hand, make their case that the H5N1 viruses merit BSL-4 containment. Although H5N1 that cannot be transmitted from human to human would normally be handled in a BSL-3 facility, researchers changed the virus' biosafety profile when they enhanced its ability to transmit between mammals. According to Imperiale and Hanna, the vaccine for H5N1 is not widely available, and drug resistance and a slow distribution system for antiviral drugs mean a small outbreak could never be contained.

Since the controversy began in December, H5N1 viruses and flu research continue to be the source of much debate. mBio® and the American Society for Microbiology present these commentaries as a means of fostering a discussion and eventually achieving consensus about H5N1 biosecurity that is based on the scientific facts surrounding the subject.

More information: mbio.asm.org/

Provided by American Society for Microbiology

not rated yet

Related Stories

Virus hybridization could create pandemic bird flu

Feb 22, 2010

Genetic interactions between avian H5N1 influenza and human seasonal influenza viruses have the potential to create hybrid strains combining the virulence of bird flu with the pandemic ability of H1N1, according to a new ...

Flu transmission work is urgent: Nature Comment

Jan 25, 2012

The author of an upcoming Nature paper about H5N1 argues in a Nature Comment article today that research into deadly pathogenic viruses must continue if pandemics are to be prevented. Yoshihiro Kawaoka suggests, after reviewi ...

Recommended for you

Global impact of the Ebola outbreak

10 minutes ago

The Ebola virus has been spreading in West Africa since March, but the current outbreak over the past few weeks has reached new heights and elevated the crisis. More than 650 people have died, and in recent days it was learned ...

S.Korea detects second foot-and-mouth case

2 hours ago

South Korea on Monday reported its second case of foot-and-mouth disease in less than a week, triggering fearful memories of a devastating 2011 outbreak that forced the culling of millions of livestock.

Ebola kills Liberian doctor, 2 Americans infected

3 hours ago

(AP)—One of Liberia's most high-profile doctors has died of Ebola, officials said Sunday, and an American physician was being treated for the deadly virus, highlighting the risks facing health workers trying ...

Hepatitis C virus genotype 1 is most prevalent worldwide

3 hours ago

In one of the largest prevalence studies to date, researchers from the U.K. provide national, regional, and global genotype prevalence estimates for the hepatitis C virus (HCV). Findings published in Hepatology, a journa ...

1 in 3000 blood donors in England infected with hepatitis E

3 hours ago

The first systematic analysis of hepatitis E virus (HEV) transmission by blood components indicates that about 1 in 3000 donors in England have HEV in their plasma. The findings, published in The Lancet, suggest that around ...

User comments