Hot on the trail of metabolic diseases and resistance to antibiotics

March 28, 2012

Proteins belonging to the large and important family of ABC transporters have been associated with metabolic diseases and can cause resistance to antibiotics. Biochemists from the University of Zurich and the NCCR Structural Biology have succeeded in determining the atomic structure of a new ABC transporter. The insights gained could give rise to new therapies to treat multi-resistant bacteria, cystic fibrosis or gout, for instance.

ABC transporters are that actively pump a wealth of molecules across the membrane. Over 40 different ABC transporters perform vital functions in humans. Genetic defects in ABC transporters can trigger metabolic diseases such as gout, or , and certain ABC transporters also cause resistance to a wide range of drugs. In tumor cells, increased amounts of ABC transporters that pump chemotherapeutic substances out of the cell are often produced, thus rendering anticancer drugs ineffective. Analogous mechanisms play a key role in many : ABC transporters carry antibiotics out of the cell – multi-resistant bacteria are the result.

Despite their major importance in biology and medicine, so far the atomic structure of only a few ABC transporters has been decoded. Now, under the supervision of Markus Seeger and Professor Markus Grütter, PhD student Michael Hohl and senior scientist Christophe Briand have succeeded in cracking the atomic structure of the new ABC transporter "TM287/288".

Illuminating asymmetry

The membrane protein originates from a thermophilic bacterium. Compared to structures already known, "TM287/288" has two different protein chains that assemble into a heterodimer. About half of the 40 human ABC transporters are heterodimers. "The asymmetries discovered enable us to consider the role of ABC transporters in a new light," explains Seeger. "In the longer term, our results could help develop new medication against multi-resistant bacteria or tumors that are difficult to treat. They also make new approaches to curing or alleviating hereditary diseases possible," concludes Grütter.

Explore further: NASA revisiting life on Mars question

More information: Michael Hohl, Christophe Briand, Markus G. Grütter & Markus A. Seeger. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. In: Nature Structural & Molecular Biology, March 28, 2012. Doi: 10.1038/nsmb.2267

Related Stories

NASA revisiting life on Mars question

October 24, 2006

NASA scientists in Washington are re-thinking whether they missed life on the Mars when they conducted initial Viking experiments 30 years ago.

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.