Study finds how to correct human mitochondrial mutations

Researchers at the UCLA stem cell center and the departments of chemistry and biochemistry and pathology and laboratory medicine have identified, for the first time, a generic way to correct mutations in human mitochondrial DNA by targeting corrective RNAs, a finding with implications for treating a host of mitochondrial diseases.

Mutations in the human genome are implicated in , metabolic defects and aging. There currently are no methods to successfully repair or compensate for these , said study co-senior author Dr. Michael Teitell, a professor of pathology and laboratory medicine and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and at UCLA.

Between 1,000 and 4,000 children per year in the United States are born with a mitochondrial disease and up to one in 4,000 children in the U.S. will develop a mitochondrial disease by the age of 10, according to Mito Action, a nonprofit organization supporting research into mitochondrial diseases. In adults, many diseases of aging have been associated with defects of mitochondrial function, including diabetes, Parkinson's disease, heart disease, stroke, Alzheimer's disease and cancer.

"I think this is a finding that could change the field," Teitell said. "We've been looking to do this for a long time and we had a very reasoned approach, but some key steps were missing. Now we have developed this method and the next step is to show that what we can do in human cell lines with mutant mitochondria can translate into animal models and, ultimately, into humans."

The study appears March 12, 2012 in the peer-reviewed journal .

The current study builds on previous work published in 2010 in the peer-reviewed journal Cell, in which Teitell, Carla Koehler, a professor of chemistry and biochemistry and a Broad Stem Cell Research Center scientist, and their team uncovered a role for an essential protein that acts to shuttle RNA into the mitochondria, the energy-producing "power plant" of a cell.

Mitochondria are described as cellular power plants because they generate most of the energy supply within a cell. In addition to supplying energy, mitochondria also are involved in a broad range of other cellular processes including signaling, differentiation, death, control of the cell cycle and growth.

The import of nucleus-encoded small RNAs into mitochondria is essential for the replication, transcription and translation of the mitochondrial genome, but the mechanisms that deliver RNA into mitochondria have remained poorly understood.

The study in Cell outlined a new role for a protein called polynucleotide phosphorylase (PNPASE) in regulating the import of RNA into mitochondria. Reducing the expression of PNPASE decreased RNA import, which impaired the processing of mitochondrial genome-encoded RNAs. Reduced RNA processing inhibited the translation of proteins required to maintain the mitochondrial electron transport chain that consumes oxygen during cell respiration to produce energy. With reduced PNPASE, unprocessed mitochondrial-encoded RNAs accumulated, protein translation was inhibited and energy production was compromised, leading to stalled cell growth.

The findings from the current study provide a form of gene therapy for mitochondria by compensating for mutations that cause a wide range of diseases, said study co-senior author Koehler.

"This opens up new avenues to understand and develop therapies for ," Koehler said. "This has the potential to have a really big impact. We just have to get it to the next step."

Gene therapy is often used to express proteins that can treat the cause of a variety of diseases. In this case, post-doctoral fellow Geng Wang developed a strategy to target and import specific RNA molecules encoded in the nucleus into the mitochondria and, once there, to express proteins needed to repair mitochondrial gene mutations.

First, the research team had to figure out a way to stabilize the reparative RNA so that it was transported out of the nucleus and then localized to the mitochondrial outer membrane. This was accomplished by engineering an export sequence to direct the RNA to the mitochondrion. Once the RNA was in the vicinity of the transport machinery on the mitochondrial surface, then a second transport sequence was required to direct the RNA into the targeted organelle. With these two modifications, a broad spectrum of RNAs were targeted to and imported into the mitochondria, where they functioned to repair defects in mitochondrial respiration and energy production in two different cell line models of human mitochondrial disease.

"This study indicates that a wide range of RNAs can be targeted to by appending a targeting sequence that interacts with PNPASE, with or without a mitochondrial localization sequence, to provide an exciting, general approach for overcoming mitochondrial genetic disorders," the study states.

Going forward, Teitell and Koehler will test their new method in small animal models to determine whether they can fix a mitochondrial defect as it occurs in a whole organism. One potential use for the new method would also be to repair mitochondrial defects in reprogrammed, embryonic or adult-type stem for use in regenerative medicine therapies.

Provided by University of California - Los Angeles

4.9 /5 (13 votes)

Related Stories

How mitochondrial DNA defects cause inherited deafness

Feb 17, 2012

(Medical Xpress) -- Yale scientists have discovered the molecular pathway by which maternally inherited deafness appears to occur: Mitochondrial DNA mutations trigger a signaling cascade, resulting in programmed ...

New mitochondrial control mechanism discovered

May 04, 2011

Scientists have discovered a new component of mitochondria that plays a key part in their function. The discovery, which is presented in the journal Cell Metabolism, is of potential significance to our understanding of both ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

16 hours ago

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

nanotech_republika_pl
not rated yet Mar 12, 2012
This could be almost a solution for one of the 7 deadly sins spelled out by Aubrey de Gray in his SENS proposal. An amazing leap in progress.
skuysandsons
not rated yet Mar 13, 2012
Correcting mutations that, in combination with some other mutations, might create an improvement to the human condition, or might be part of another successful result, is foolhardy at best and totally insane at worst.
Shakescene21
not rated yet Mar 13, 2012
@Nanotech -- Right on! This line of research could be one of the most important medical breakthroughs of the decade. I hope Koehler and his associates are able to pursue this full-time.