Researchers discover mechanism in cells that leads to inflammatory diseases

March 12, 2012

Cedars-Sinai researchers have unlocked the mystery of how an inflammatory molecule is produced in the body, a discovery they say could lead to advances in the treatment of rheumatoid arthritis, Type 2 diabetes and numerous other chronic diseases that affect tens of millions of people.

The study, funded by the National Institutes of Health, is published online by the peer-reviewed journal Immunity and will appear in the March print edition.

The researchers identified for the first time the mechanism that leads to the production of the molecule interleukin-1beta. It is a major contributor to inflammation, which lies at the root of many serious health conditions, including atherosclerotic heart disease and some types of strokes.

Current drug therapies seek to block this molecule's action after it is secreted by cells. However, the new research could lead to the development of treatments that would prevent the body from producing it, resulting in more effective medications and therapies for .

"If we understand how this molecule is made in the body, we may be able to block it before it is produced," said study author Dr. Moshe Arditi, executive vice chair of research in the Department of Pediatrics and director of the Division of Pediatric and Immunology. "Until now, this was the missing piece of the puzzle."

Arditi, who also directs Cedars-Sinai's Infectious and Immunologic Diseases Research Center, found that damaged activate specific proteins within , triggering the release of interleukin-1beta. Previous research has shown the molecule, when over-secreted by cells, can be a significant contributor to major inflammatory diseases.

Three of these diseases alone -- atherosclerosis, and – affect an estimated 100 million Americans.

Arditi is planning further studies to build on the findings.

"The discovery by Arditi and colleagues has great potential to impact a wide range of inflammatory diseases, particularly in their early stages where an intervention could prevent more severe and debilitating ravages of such diseases," said Dr. Leon Fine, Cedars-Sinai's vice dean of research and chair of biomedical sciences. "This discovery, at last, may open the door to such therapy."

In addition to Cedars-Sinai, other research groups involved in the study include UCLA 's David Geffen School of Medicine, UC Merced's Health Sciences Research Institute and School of Natural Sciences; UC Riverside's Department of Chemistry and the University of Massachusetts Medical School's Department of Medicine.

Explore further: Study helps clarify link between high-fat diet and type 2 diabetes

Related Stories

Recommended for you

Snapshot turns T cell immunology on its head

October 6, 2015

Challenging a universally accepted, longstanding consensus in the field of immunity requires hard evidence. New research from the Australian Research Council Centre of excellence in advanced Molecular imaging has shown the ...

Four gut bacteria decrease asthma risk in infants

September 30, 2015

New research by scientists at UBC and BC Children's Hospital finds that infants can be protected from getting asthma if they acquire four types of gut bacteria by three months of age. More than 300 families from across Canada ...

Flu infection reveals many paths to immune response

September 28, 2015

A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological ...

Immune cells may help fight against obesity

September 15, 2015

While a healthy lifestyle and "good genes" are known to help prevent obesity, new research published on September 15 in Immunity indicates that certain aspects of the immune system may also play an important role. In the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.