New research could provide roadmap for more effective drug discovery for cystic fibrosis

A recent study led by Gergely Lukacs, a professor at McGill University's Faculty of Medicine, Department of Physiology, and published in the January issue of Cell, has shown that restoring normal function to the mutant gene product responsible for cystic fibrosis (CF) requires correcting two distinct structural defects. This finding could point to more effective therapeutic strategies for CF in the future.

CF, a fatal genetic disease that affects about 60,000 people worldwide, is caused by mutations in the (CFTR), a membrane protein involved in ion and water transport across the cell surface. As such, CF is characterized by impaired chloride secretion causing the accumulation of viscous mucous that may cause multiple organ dysfunctions, including recurrent lung infection.

The most common mutation in CFTR, known as deltaF508, is caused by a single amino acid deletion and results in a misfolded version of CFTR that is retained within the cell and quickly degrades rather than being trafficked to the cell membrane where it would function as a .

In 2005, Lukacs and his lab suggested that deltaF508 mutation effect is not restricted to the domain (the nucleotide binding domain 1 or NBD1, one of five building blocks of CFTR) where the deltaF508 is located. Specifically, his team found that the mutation destabilizes the NBD1 as well as the NBD2 architecture, suggesting that domain-domain interaction plays a critical role in both normal and pathological CFTR folding.

Building on his team's previous work and computer generated models of CFTR, Lukacs and his team set out to determine whether it was possible to correct both NBD1 stability and domain-domain interaction defect. Using a combination of biophysical, biochemical and , the team found that only simultaneous correction of both folding defects was able to ensure normal-like cell surface expression and function of the mutant.

"These findings offer a plausible explanation for the limited efficiency of the available correctors currently under clinical trial. If there are two different folding steps to correct, it is difficult to envision how a single drug could work," explained Lukacs. "The proposed two-step folding model points to the fact that the correction strategy has to be reconsidered."

add to favorites email to friend print save as pdf

Related Stories

An 'unconventional' path to correcting cystic fibrosis

Sep 01, 2011

Researchers have identified an unconventional path that may correct the defect underlying cystic fibrosis, according to a report in the September 2nd issue of the journal Cell. This new treatment dramatically extends the li ...

Channeling efforts to fight cystic fibrosis

Sep 17, 2010

The lab of Kevin Foskett, PhD, the Isaac Ott Professor of Physiology at the University of Pennsylvania School of Medicine, has found a possible new target for fighting cystic fibrosis (CF) that could compensate ...

Recommended for you

Growing a blood vessel in a week

17 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

20 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments