Scientists study human diseases in flies

More than two-thirds of human genes have counterparts in the well-studied fruit fly, Drosophila melanogaster, so although it may seem that humans don't have much in common with flies, the correspondence of our genetic instructions is astonishing. In fact, there are hundreds of inherited diseases in humans that have Drosophila counterparts.

At the ongoing Genetics Society of America's 53rd Annual Drosophila Research Conference in Chicago, several scientific investigators shared their knowledge of some of these diseases, including ataxia-telangiectasia (A-T), a ; Rett Syndrome, a ; and kidney stones, a common health ailment. All are the subject on ongoing research using the Drosophila .

Andrew Petersen, a graduate student in Dr. David Wassarman's laboratory at the University of Wisconsin-Madison, discussed his experiments with a fly model of the rare childhood disease ataxia-telangiectasia. A-T causes within the brain, poor coordination, characteristic spidery blood vessels that show through the skin, and susceptibility to leukemias and lymphomas. A-T generally results in a life expectancy of only 25 years.

A-T is normally lethal in flies, but Mr. Petersen induced a mutant that develops symptoms only when the environmental temperature rises above a certain level, allowing Mr. Petersen to control the lethality by varying the fly's environment. The mutant flies lose their ability to climb up the sides of their vial habitats –- a sign of neurodegeneration -- and die prematurely. Their glial cells are primarily affected, rather than the neurons that the glia support. In addition, an innate immune response is activated in the compromised glia, a scenario reminiscent of Alzheimer's and Parkinson's diseases. "We are one step closer to knowing how these diseases occur and possibly how we can treat them," Mr. Petersen concluded.

Sarah Certel, Ph.D., assistant professor of biological sciences at the University of Montana-Missoula, works with flies that have been altered to include the human gene MeCP2. This gene controls how neurons use many other genes, and the amount of the protein that it encodes must be within a specific range for the brain to develop normally. Too little of the protein and Rett syndrome results, a disorder on the X chromosome, which exclusively affects females in childhood. (Males with this mutation are generally miscarried or are stillborn.) It causes a constellation of symptoms including characteristic hand-wringing, autism, seizures, cognitive impairment, and loss of mobility. Yet too much of the protein causes similar problems.

In flies, altered levels of the MeCP2 protein affect sleep and aggression. For flies and most model organisms, sleep is inferred as the absence of activity during the day and night. To study sleep, Dr. Certel conducted "actograms" for individual flies. "The actogram records the activities of individually housed when they cross an infrared beam," she explained. The flies' sleep became fragmented, delayed, and shortened. "We're studying the link between the cellular changes and behaviors," she added.

Switching from the brain to the urinary system, it was noted that "Drosophila get kidney stones too" began Julian Dow, Ph.D., professor of molecular and integrative physiology at the University of Glasgow, United Kingdom. The fly version of a kidney is much simpler in design, a quartet of Malpighian tubules that are conveniently transparent.

Dr. Dow discussed a fly mutant called "rosy," discovered a century ago, that corresponds to the rare human inborn error of metabolism called xanthinuria type 1, as well as a diet-induced blockage that corresponds to the more common human condition of calcium oxalate kidney stones. In time-lapse video, Dr. Dow showed stones appearing and growing in the Malpighian tubule.

"This was the first time in history that we saw kidney stones form -- something that you cannot ethically do in humans," he said. His research group, in collaboration with Dr. Michael Romero at the Mayo Institute, is now searching for chemical compounds that interfere with the formation of stones and their tendency to accrete into painful obstructions. They've already found a way to block a gene responsible for transporting the oxalate, slowing stone formation. With time, this work could help reduce the 250,000 emergency room admissions for in the USA annually and the more than $2 billion in health care costs for treating them.

These were only three of several human diseases discussed at the Drosophila Conference. Others included oxidative stress, cancer linked to diabetes, amyloid build-up in Alzheimer's disease, epilepsy, and muscular dystrophy. There are so many human diseases that have Drosophila counterparts that they are listed in a database called Homophila. Given the number that exist, we are certain to be learning more about our health from the fly in the years ahead.

Provided by Genetics Society of America

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Of mice and men... and kidney stones

Mar 01, 2008

Kidney stones are very common – and painful – in men. About 3 in 20 men (1 in 20 women) in developed countries develop them at some stage. Mice, however, rarely suffer though the precise reasons are unknown. Jeffrey ...

Searching for shut eye: Study identifies possible sleep gene

Jul 29, 2008

While scientists and physicians know what happens if you don't get six to eight hours of shut-eye a night, investigators have long been puzzled about what controls the actual need for sleep. Researchers at the University ...

Recommended for you

Science of romantic relationships includes gene factor

15 hours ago

(Medical Xpress)—Adolescents worry about passing tests, winning games, lost phones, fractured bones—and whether or not they will ever really fall in love. Three Chinese researchers have focused on that ...

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.