Computer simulations help explain why HIV cure remains elusive

A new research report appearing in the March 2012 issue of the journal Genetics shows why the development of a cure and new treatments for HIV has been so difficult. In the report, an Australian scientist explains how he used computer simulations to discover that a population starting from a single human immunodeficiency virus can evolve fast enough to escape immune defenses. These results are novel because the discovery runs counter to the commonly held belief that evolution under these circumstances is very slow.

"I believe the search for a cure for AIDS has failed so far because we do not fully understand how HIV evolves," said Jack da Silva, Ph.D., author of the study from the School of Molecular and Biomedical Science at the University of Adelaide in Adelaide, Australia. "Further insight into the precise by which the virus manages to so readily adapt to all the challenges we throw at it will, hopefully, lead to novel strategies for vaccines and other ."

To make this discovery, da Silva used computer simulation to determine whether, under realistic conditions, the virus could evolve as rapidly as had been reported if the virus population started from a single individual virus. This was done by constructing a model of the virus population and then simulating the killing of virus-infected cells by the immune system, along with mutation, recombination and random genetic changes, due to a small population size, affecting viral genes. Results showed that for realistic rates of cell killing, mutation and recombination, and a realistic population size, that the virus could evolve very rapidly even if the initial population size is one.

"A cure for HIV/AIDS has been elusive, and this report sheds light on the reason," said Mark Johnston, Ph.D., Editor-in-Chief of the journal Genetics. "Now that we know HIV rapidly evolves, even when its population size is small, we may be able to interfere with its ability to evolve so we can get the most out of the treatments that are developed."

Provided by Genetics Society of America

not rated yet
add to favorites email to friend print save as pdf

Related Stories

3D structure of HIV is discovered

Jan 24, 2006

Scientists say the 3D structure of the human immunodeficiency virus, which causes AIDS, has been determined for the first time.

Viral recombination another way HIV fools the immune system

Jul 21, 2008

When individuals infected with HIV become infected with a second strain of the virus, the two viral strains can exchange genetic information, creating a third, recombinant strain of the virus. It is known that the presence ...

Drug helps purge hidden HIV virus, study shows

Mar 08, 2012

A team of researchers at the University of North Carolina at Chapel Hill have successfully flushed latent HIV infection from hiding, with a drug used to treat certain types of lymphoma.

Recommended for you

Condoms 'too small' for Uganda men

Sep 19, 2014

Ugandan MPs have been inundated with complaints that many condoms on sale in the east African nation are too small, warning the problem is a blow to the fight against AIDS.

Withdrawal from the evolutionary race

Sep 18, 2014

In some HIV sufferers, the immune system does not fight off the immune deficiency virus. Instead, the body tolerates the pathogen. A research team headed by ETH Zurich has now determined how strongly patients ...

The genetics of coping with HIV

Sep 16, 2014

We respond to infections in two fundamental ways. One, which has been the subject of intensive research over the years, is "resistance," where the body attacks the invading pathogen and reduces its numbers. Another, which ...

User comments