Stem cells hint at potential treatment for Huntington's disease

March 15, 2012
A GABA neuron made from human stem cells in the lab of University of Wisconsin-Madison neuroscientist Su-Chun Zhang. GABA neurons are the brain cells whose degradation causes Huntington's disease, a condition characterized by severely degraded motor function, among other things. Zhang and his colleagues have shown that the severe motor deficits observed in a mouse model of Huntington's can be corrected by implanting the lab made cells. Image credit: Su-Chun Zhang

Huntington's disease, the debilitating congenital neurological disorder that progressively robs patients of muscle coordination and cognitive ability, is a condition without effective treatment, a slow death sentence.

But if researchers can build on new research reported this week (March 15, 2012) in the journal Cell Stem Cell, a special type of brain cell forged from stem cells could help restore the muscle coordination deficits that cause the uncontrollable spasms characteristic of the disease.

"This is really something unexpected," says Su-Chun Zhang, a University of Wisconsin-Madison neuroscientist and the senior author of the new study, which showed that locomotion could be restored in mice with a Huntington's-like condition.

Zhang is an expert at making different types of from human embryonic or induced . In the new study, his group focused on what are known as GABA neurons, cells whose degradation is responsible for disruption of a key and loss of motor function in Huntington's patients. GABA neurons, Zhang explains, produce a key neurotransmitter, a chemical that helps underpin the communication network in the brain that coordinates movement.

In the laboratory, Zhang and his colleagues at the UW-Madison Waisman Center have learned how to make large amounts of GABA neurons from human , which they sought to test in a mouse model of Huntington's disease. The goal of the study, Zhang notes, was simply to see if the cells would safely integrate into the . To their astonishment, the cells not only integrated but also project to the right target and effectively reestablished the broken communication network, restoring motor function.

The results of the study were surprising, Zhang explains, because GABA neurons reside in one part of the brain, the , which plays a key role in voluntary motor coordination. But the GABA neurons exert their influence at a distance on cells in the midbrain through the circuit fueled by the GABA neuron chemical neurotransmitter.

"This circuitry is essential for ," Zhang says, "and it is what is broken in Huntington patients. The GABA neurons exert their influence at a distance through this circuit. Their cell targets are far away."

That the transplanted cells could effectively reestablish the circuit was completely unexpected: "Many in the field feel that successful cell transplants would be impossible because it would require rebuilding the circuitry. But what we've shown is that the GABA neurons can remake the circuitry and produce the right neurotransmitter."

The implications of the new study are important not only because they suggest it may one day be possible to use cell therapy to treat Huntington's, but also because it suggests the adult brain may be more malleable than previously believed.

The adult brain, notes Zhang, is considered by to be stable, and not easily susceptible to therapies that seek to correct things like the broken circuits at the root of conditions like Huntington's. For a therapy to work, it has to be engineered so that only cells of interest are affected. "The brain is wired in such a precise way that if a neuron projects the wrong way, it could be chaotic."

Zhang stresses that while the new research is promising, working up from the mouse model to human patients will take much time and effort. But for a disease that now has no effective treatment, the work could become the next best hope for those with Huntington's.

Explore further: Implanted neurons, grown in the lab, take charge of brain circuitry

Related Stories

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.