Tales from the crypt lead researchers to cancer discovery

Tales from the crypt are supposed to be scary, but new research from Vanderbilt University, the HudsonAlpha Institute for Biotechnology and colleagues shows that crypts can be places of renewal too: intestinal crypts, that is. Intestinal crypts are small areas of the intestine where new cells are formed to continuously renew the digestive tract. By focusing on one protein expressed in our intestines called Lrig1, the researchers have identified a special population of intestinal stem cells that respond to damage and help to prevent cancer.

The research, published in the March 30 issue of Cell, also shows the diversity of stem cells in the intestines is greater than previously thought.

"Identification of these cells and the role they likely play in response to injury or damage will help advance discoveries in cancer," said Shawn Levy, Ph.D., faculty investigator at the HudsonAlpha Institute and an author on the study.

The intestines and colon are normally lined with a single layer of cells to absorb nutrients from food. There are regular small pockets in the intestines called crypts, where stem cells are gathered. Rapid turnover of the lining cells and replacement by new lining cells made in the crypt, keep the intestines and colon healthy and keep damaged cells from turning into cancerous ones.

The new paper demonstrates that, although the makeup of stem cells in the crypt is still controversial, one protein called Lrig1 can distinguish a group of long-lived cells at the base of the crypt. These Lrig1-positive stem cells do not regularly replace lining cells, but instead are only activated when there is damage or injury to the .

In addition, the researchers show that the Lrig1 to prevent cancer as a tumor suppressor molecule. When the protein is completely absent from a , the mice all develop and then tumors. This suggests that Lrig1 is an important target for understanding and treating intestinal and .

Levy added, "RNA sequencing work at HudsonAlpha found that the Lrig1-positive stem cells are molecularly different in multiple ways from previously identified crypt , in keeping with their role in responding to damage." Further work on genes expressed or silenced in this population of cells, he added, will increase understanding of both normal and cancer cell progression in the intestines.

More information: www.cell.com/

Provided by HudsonAlpha Institute for Biotechnology

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

The making of an intestinal stem cell

Mar 05, 2009

Researchers have found the factor that makes the difference between a stem cell in the intestine and any other cell. The discovery reported in the March 6th issue of the journal Cell, a Cell Press publication, is an essent ...

Attacking bowel cancer on two fronts

Mar 31, 2011

Stem cells in the intestine, which when they mutate can lead to bowel cancers, might also be grown into transplant tissues to combat the effects of those same cancers, the UK National Stem Cell Network (UKNSCN) annual science ...

Recommended for you

US women's awareness of breast density varies

12 hours ago

Disparities in the level of awareness and knowledge of breast density exist among U.S. women, according to the results of a Mayo Clinic study published in the Journal of Clinical Oncology.

Study shows why some brain cancers resist treatment

12 hours ago

Scientists at The University of Texas MD Anderson Cancer Center may have discovered why some brain cancer patients develop resistance to standard treatments including radiation and the chemotherapy agent temozolomide.

Researchers identify genes responsible for lung tumors

14 hours ago

The lung transcription factor Nkx2-1 is an important gene regulating lung formation and normal respiratory functions after birth. Alterations in the expression of this transcription factor can lead to diseases such as lung ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.