Researchers develop first 'theranostic' treatment for acute lymphoblastic leukemia (ALL)

A team of researchers at Case Western Reserve University School of Medicine has developed the first "theranostic" agent for the treatment of acute lymphoblastic leukemia (ALL). ALL is the most common type of childhood cancer diagnosed in approximately 5,000 new cases each year in the United States. The findings provide insight into pediatric oncology that specifically focuses on the development of "theranostic" agents-- a treatment platform that combines a selective diagnostic test with targeted therapy based on the test results.

Discovery of this new class of drugs is the first step towards new diagnostic markers and in treatments with anti-cancer agents of numerous other cancers in addition to ALL.

"This discovery takes a chemical biology approach to target ALL. Our nucleosides represent a new class of theranostic agents that provide an original approach to achieving personalized treatments against pediatric leukemia," says Anthony J. Berdis, PhD, assistant professor of pharmacology at Case Western Reserve School of Medicine.

"We've developed a non-natural nucleoside that specifically targets this form of . The combination of therapeutic and diagnostic activities will provide more selective and more expedient ways to treat patients by optimizing the dosages needed to kill the without affecting normal cells. This selectivity should minimize the development of adverse side effects typically associated with conventional anti-cancer nucleosides," says Dr. Berdis.

Using an enzyme implicated in the disease, terminal deoxynucleotidyl transferase (TdT) which serves as a biomarker and is overexpressed in 90 percent of ALL patients, Dr. Berdis and his team designed a new selective anti-cancer agent against ALL. By evaluating the anti-leukemia activities of two non-natural nucleotides designated 5-NITP and 3-Eth-5-NITP, the investigators strategically placed novel on these agents so that they could be tagged with fluorogenic dyes. These taggable nucleotides improve the accuracy of dosing regiments and could accelerate clinical decisions regarding therapeutic intervention. The next steps will be validation in animal studies and toxicology testing, leading to clinical trials.

This study appears online this week in ACS . In addition to Dr. Berdis, co-authors on the paper include Edward A. Motea and Dr. Irene Lee, in the Department of Chemistry and Department of Pharmacology at Case Western Reserve.

(ALL) is a form of leukemia, or cancer of the white blood cells characterized by excess lymphoblasts. Acute refers to the relatively short time course of the disease (being fatal in as little as a few weeks if left untreated). This disease is caused when malignant, immature white blood cells continuously multiply and are overproduced in the bone marrow. ALL causes damage and death by crowding out normal cells in the bone marrow and by spreading to other organs. Although ALL is most common in childhood with a peak incidence at 2-5 years of age, this type of leukemia is also prevalent in people over the age of 60.

Related Stories

Scientists bioengineer a protein to fight leukemia

Feb 18, 2011

Scientists at the Children's Center for Cancer and Blood Diseases and The Saban Research Institute of Children's Hospital Los Angeles today announced a breakthrough discovery in understanding how the body ...

New gateway to treat leukemia and other cancers

Mar 25, 2010

Canadian researchers have discovered a previously hidden channel to attack leukemia and other cancer cells, according to a new study published in the Journal of Biological Chemistry. The findings from the Université de Mon ...

Key to fighting drug-resistant leukemia found

May 18, 2011

Doctors who treat children with the most common form of childhood cancer – acute lymphoblastic leukemia – are often baffled at how sometimes the cancer cells survive their best efforts and the most powerful modern ...

Recommended for you

Britain to map 100,000 DNA code sequences

47 minutes ago

British scientists are to map 100,000 complete DNA code sequences in a project that will make the country a world leader in genetic research on cancer and rare diseases, the prime minister said on Friday.

New paper describes how DNA avoids damage from UV light

14 hours ago

In the same week that the U.S. surgeon general issued a 101-page report about the dangers of skin cancer, researchers at Montana State University published a paper breaking new ground on how DNA – the genetic code in every ...

User comments