Diamond implants are forever

April 30, 2012
Diamond implants are forever
© Thinkstock

Artificial retina implants for treating neurodegenerative diseases and blindness were developed by the EU-funded 'Diamond to retina artificial micro-interface structures' (Dreams) project.

Electrical stimulation of the specialised cell’s that conduct nerve impulses, known as neurones, is a well known therapy for treating Parkinson’s disease and other degenerative disorders of the central nervous system (CNS). This approach could also have a significant impact on the treatment of .

However, available commercial devices based on metal-impregnated electrodes break down in the body causing cells to react by forming a glial scar. Therefore, a new approach was needed for creating implants that could activate the neurones and not degrade over time.

The Dreams project investigated new types of nanotransducers based on artificial nanocrystalline diamond (NCD), which does not break down in the body, and took advantage of NCD semiconducting properties. The consortium’s aim was to create biocompatible implants that were capable of restoring patients’ vision to a useable level.

Project partners used NCD films to create new structures on which neural cells could be grown to create implants that were compatible with the human body. The scientists then assessed the survival rate and stability of the cells, which were taken from the lining of the inner eye of laboratory rats. The ability of the implants to successfully activate neurones was also examined.

Results showed good biocompatibility for diamond in contact with retinal tissue and supported the potential use of diamond in neural and retinal prostheses. The project’s success therefore provides a ray of hope for sufferers of degenerative disease and blindness, who may not have to remain in the dark any longer.

Related Stories

Recommended for you

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.