Diamond implants are forever

April 30, 2012
Diamond implants are forever
© Thinkstock

Artificial retina implants for treating neurodegenerative diseases and blindness were developed by the EU-funded 'Diamond to retina artificial micro-interface structures' (Dreams) project.

Electrical stimulation of the specialised cell’s that conduct nerve impulses, known as neurones, is a well known therapy for treating Parkinson’s disease and other degenerative disorders of the central nervous system (CNS). This approach could also have a significant impact on the treatment of .

However, available commercial devices based on metal-impregnated electrodes break down in the body causing cells to react by forming a glial scar. Therefore, a new approach was needed for creating implants that could activate the neurones and not degrade over time.

The Dreams project investigated new types of nanotransducers based on artificial nanocrystalline diamond (NCD), which does not break down in the body, and took advantage of NCD semiconducting properties. The consortium’s aim was to create biocompatible implants that were capable of restoring patients’ vision to a useable level.

Project partners used NCD films to create new structures on which neural cells could be grown to create implants that were compatible with the human body. The scientists then assessed the survival rate and stability of the cells, which were taken from the lining of the inner eye of laboratory rats. The ability of the implants to successfully activate neurones was also examined.

Results showed good biocompatibility for diamond in contact with retinal tissue and supported the potential use of diamond in neural and retinal prostheses. The project’s success therefore provides a ray of hope for sufferers of degenerative disease and blindness, who may not have to remain in the dark any longer.

Related Stories

Recommended for you

Rac1 protein critical for lung development

October 20, 2016

A study by researchers from The Saban Research Institute of Children's Hospital Los Angeles reveals a promising therapeutic target for improving lung function in infants. Their study, now published online by the American ...

A vitamin could help treat Duchenne muscular dystrophy

October 19, 2016

Duchenne is the most common and severe form of muscular dystrophy. Because of this genetic disease, one out of every 3,500 children spends their 12th birthday in a wheelchair. This disorder progressively leads to general ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.